SEDAT: Sentiment and Emotion Detection in Arabic Text Using CNN-LSTM Deep Learning

Malak Abdullah, M. Hadzikadic, Samira Shaikh
{"title":"SEDAT: Sentiment and Emotion Detection in Arabic Text Using CNN-LSTM Deep Learning","authors":"Malak Abdullah, M. Hadzikadic, Samira Shaikh","doi":"10.1109/ICMLA.2018.00134","DOIUrl":null,"url":null,"abstract":"Social media is growing as a communication medium where people can express online their feelings and opinions on a variety of topics in ways they rarely do in person. Detecting sentiments and emotions in text have gained considerable amount of attention in the last few years. The significant role of the Arab region in international politics and in the global economy have led to the investigation of sentiments and emotions in Arabic. This paper describes our system - SEDAT, to detect sentiments and emotions in Arabic tweets. We use word and document embeddings and a set of semantic features and apply CNN-LSTM and a fully connected neural network architectures to obtain performance results that show substantial improvements in Spearman correlation scores over the baseline models.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"106 1","pages":"835-840"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Social media is growing as a communication medium where people can express online their feelings and opinions on a variety of topics in ways they rarely do in person. Detecting sentiments and emotions in text have gained considerable amount of attention in the last few years. The significant role of the Arab region in international politics and in the global economy have led to the investigation of sentiments and emotions in Arabic. This paper describes our system - SEDAT, to detect sentiments and emotions in Arabic tweets. We use word and document embeddings and a set of semantic features and apply CNN-LSTM and a fully connected neural network architectures to obtain performance results that show substantial improvements in Spearman correlation scores over the baseline models.
SEDAT:使用CNN-LSTM深度学习的阿拉伯语文本的情绪和情感检测
社交媒体正在成为一种交流媒介,人们可以在网上以很少面对面的方式表达他们对各种话题的感受和观点。在过去的几年里,检测文本中的情绪和情感已经获得了相当多的关注。阿拉伯地区在国际政治和全球经济中的重要作用导致了对阿拉伯语的情绪和情绪的调查。本文描述了我们的系统SEDAT,用于检测阿拉伯语推文中的情绪和情绪。我们使用单词和文档嵌入以及一组语义特征,并应用CNN-LSTM和一个完全连接的神经网络架构来获得性能结果,该结果显示,与基线模型相比,Spearman相关分数有了实质性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信