Drug-target interaction prediction for drug repurposing with probabilistic similarity logic

Shobeir Fakhraei, L. Raschid, L. Getoor
{"title":"Drug-target interaction prediction for drug repurposing with probabilistic similarity logic","authors":"Shobeir Fakhraei, L. Raschid, L. Getoor","doi":"10.1145/2500863.2500870","DOIUrl":null,"url":null,"abstract":"The high development cost and low success rate of drug discovery from new compounds highlight the need for methods to discover alternate therapeutic effects for currently approved drugs. Computational methods can be effective in focusing efforts for such drug repurposing. In this paper, we propose a novel drug-target interaction prediction framework based on probabilistic similarity logic (PSL) [5]. Interaction prediction corresponds to link prediction in a bipartite network of drug-target interactions extended with a set of similarities between drugs and between targets. Using probabilistic first-order logic rules in PSL, we show how rules describing link predictions based on triads and tetrads can effectively make use of a variety of similarity measures. We learn weights for the rules based on training data, and report relative importance of each similarity for interaction prediction. We show that the learned rule weights significantly improve prediction precision. We evaluate our results on a dataset of drug-target interactions obtained from Drugbank [27] augmented with five drug-based and three target-based similarities. We integrate domain knowledge in drug-target interaction prediction and match the performance of the state-of-the-art drug-target interaction prediction systems [22] with our model using simple triad-based rules. Furthermore, we apply techniques that make link prediction in PSL more efficient for drug-target interaction prediction.","PeriodicalId":90497,"journal":{"name":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","volume":"33 2 1","pages":"10-17"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary computation, machine learning and data mining in bioinformatics. EvoBIO (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500863.2500870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

The high development cost and low success rate of drug discovery from new compounds highlight the need for methods to discover alternate therapeutic effects for currently approved drugs. Computational methods can be effective in focusing efforts for such drug repurposing. In this paper, we propose a novel drug-target interaction prediction framework based on probabilistic similarity logic (PSL) [5]. Interaction prediction corresponds to link prediction in a bipartite network of drug-target interactions extended with a set of similarities between drugs and between targets. Using probabilistic first-order logic rules in PSL, we show how rules describing link predictions based on triads and tetrads can effectively make use of a variety of similarity measures. We learn weights for the rules based on training data, and report relative importance of each similarity for interaction prediction. We show that the learned rule weights significantly improve prediction precision. We evaluate our results on a dataset of drug-target interactions obtained from Drugbank [27] augmented with five drug-based and three target-based similarities. We integrate domain knowledge in drug-target interaction prediction and match the performance of the state-of-the-art drug-target interaction prediction systems [22] with our model using simple triad-based rules. Furthermore, we apply techniques that make link prediction in PSL more efficient for drug-target interaction prediction.
基于概率相似逻辑的药物再利用药物-靶标相互作用预测
从新化合物中发现药物的高开发成本和低成功率突出了发现现有批准药物的替代治疗效果的方法的必要性。计算方法可以有效地集中此类药物再利用的努力。在本文中,我们提出了一种基于概率相似逻辑(PSL)的药物-靶标相互作用预测框架[5]。相互作用预测对应于药物-靶标相互作用的二部网络中的链接预测,该网络由药物之间和靶标之间的一系列相似性扩展而成。使用PSL中的概率一阶逻辑规则,我们展示了描述基于三分体和四分体的链接预测的规则如何有效地利用各种相似性度量。我们根据训练数据学习规则的权重,并报告每个相似度的相对重要性,以进行交互预测。结果表明,学习到的规则权重显著提高了预测精度。我们在Drugbank[27]获得的药物-靶标相互作用数据集上评估了我们的结果,其中增加了5种基于药物的相似性和3种基于靶标的相似性。我们将领域知识整合到药物-靶标相互作用预测中,并使用简单的基于三元组的规则将最先进的药物-靶标相互作用预测系统[22]的性能与我们的模型相匹配。此外,我们将使PSL中的链接预测技术更有效地用于药物-靶标相互作用预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信