{"title":"Hydrolysis of sucrose by dealuminated Y-zeolites","authors":"Christoph Buttersack, Daniela Laketic","doi":"10.1016/0304-5102(94)00158-8","DOIUrl":null,"url":null,"abstract":"<div><p>Hydrolysis of surcose by protonated Y-zeolites was shown to be strongly accelerate by delumination. Two or less protons per unit cell provide a maximal rate constant per acid site. The rate constant is the same compared to diluted homogenous acid solution. Hydrophobic interactions essentially contribute to the adsorption of the sucrose molecule but not to the energy of the activated transition state. It was proved that the zeolite pores are able to include a sucrose molecule in addition to at least one water molecule. Because of the limited space inside the zeolite pore, a change of conformation compared with the state in solution is reqired.</p></div>","PeriodicalId":16567,"journal":{"name":"分子催化","volume":"94 3","pages":"Pages L283-L290"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0304-5102(94)00158-8","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"分子催化","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304510294001588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 33
Abstract
Hydrolysis of surcose by protonated Y-zeolites was shown to be strongly accelerate by delumination. Two or less protons per unit cell provide a maximal rate constant per acid site. The rate constant is the same compared to diluted homogenous acid solution. Hydrophobic interactions essentially contribute to the adsorption of the sucrose molecule but not to the energy of the activated transition state. It was proved that the zeolite pores are able to include a sucrose molecule in addition to at least one water molecule. Because of the limited space inside the zeolite pore, a change of conformation compared with the state in solution is reqired.
期刊介绍:
Journal of Molecular Catalysis (China) is a bimonthly journal, founded in 1987. It is a bimonthly journal, founded in 1987, sponsored by Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, under the supervision of Chinese Academy of Sciences, and published by Science Publishing House, which is a scholarly journal openly circulated both at home and abroad. The journal mainly reports the latest progress and research results on molecular catalysis. It contains academic papers, research briefs, research reports and progress reviews. The content focuses on coordination catalysis, enzyme catalysis, light-ribbed catalysis, stereochemistry in catalysis, catalytic reaction mechanism and kinetics, the study of catalyst surface states and the application of quantum chemistry in catalysis. We also provide contributions on the activation, deactivation and regeneration of homogeneous catalysts, solidified homogeneous catalysts and solidified enzyme catalysts in industrial catalytic processes, as well as on the optimisation and characterisation of catalysts for new catalytic processes.
The main target readers are scientists and postgraduates working in catalysis in research institutes, industrial and mining enterprises, as well as teachers and students of chemistry and chemical engineering departments in colleges and universities. Contributions from related professionals are welcome.