Shen-Li Chen, Chih-Hung Yang, Chih-Ying Yen, K. Chen, Yi-Cih Wu, Jia-Ming Lin
{"title":"Design on ESD robustness of source-side discrete distribution in the 60-V high-voltage nLDMOS devices","authors":"Shen-Li Chen, Chih-Hung Yang, Chih-Ying Yen, K. Chen, Yi-Cih Wu, Jia-Ming Lin","doi":"10.1109/ICCE-TW.2016.7521041","DOIUrl":null,"url":null,"abstract":"The electrostatic-discharge (ESD) protection capability of HV nLDMOS devices with the source-side engineering by a TSMC 0.25μm 60-V is investigated in this paper. It can be found that a pure nLDMOS device has a poor anti-ESD ability (It2 = 1.833A). At the same time, if an nLDMOS was embedded with an SCR npn-(pnp-) arranged type in the drain-side, the corresponding secondary breakdown-current values are promoted 19.4% (24.8%) as comparing with a traditional nLDMOS. Furthermore, if the source discrete methodology is applied for the nLDMOS-embedded SCR npn-(pnp-) arranged type, the maximum secondary breakdown current value are promoted 24.1% (>281.9%). Finally, it can be concluded that a discrete distribution in the source region of a pure nLDMOS will upgrade the anti-ESD capability effectively, and it is especially for the nLDMOS-SCR pnp-arranges type.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"41 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7521041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The electrostatic-discharge (ESD) protection capability of HV nLDMOS devices with the source-side engineering by a TSMC 0.25μm 60-V is investigated in this paper. It can be found that a pure nLDMOS device has a poor anti-ESD ability (It2 = 1.833A). At the same time, if an nLDMOS was embedded with an SCR npn-(pnp-) arranged type in the drain-side, the corresponding secondary breakdown-current values are promoted 19.4% (24.8%) as comparing with a traditional nLDMOS. Furthermore, if the source discrete methodology is applied for the nLDMOS-embedded SCR npn-(pnp-) arranged type, the maximum secondary breakdown current value are promoted 24.1% (>281.9%). Finally, it can be concluded that a discrete distribution in the source region of a pure nLDMOS will upgrade the anti-ESD capability effectively, and it is especially for the nLDMOS-SCR pnp-arranges type.