Rectangle-efficient aggregation in spatial data streams

S. Tirthapura, David P. Woodruff
{"title":"Rectangle-efficient aggregation in spatial data streams","authors":"S. Tirthapura, David P. Woodruff","doi":"10.1145/2213556.2213595","DOIUrl":null,"url":null,"abstract":"We consider the estimation of aggregates over a data stream of multidimensional axis-aligned rectangles. Rectangles are a basic primitive object in spatial databases, and efficient aggregation of rectangles is a fundamental task. The data stream model has emerged as a de facto model for processing massive databases in which the data resides in external memory or the cloud and is streamed through main memory. For a point <i>p</i>, let <i>n(p)</i> denote the sum of the weights of all rectangles in the stream that contain <i>p</i>. We give near-optimal solutions for basic problems, including (1) the <i>k</i>-th frequency moment <i>F<sub>k</sub></i> = ∑ <sub>points <i>p</i></sub>|<i>n(p)</i>|<sup><i>k</i></sup>, (2)~the counting version of stabbing queries, which seeks an estimate of <i>n(p)</i> given <i>p</i>, and (3) identification of heavy-hitters, i.e., points <i>p</i> for which <i>n(p)</i> is large. An important special case of <i>F<sub>k</sub></i> is <i>F<sub>0</sub></i>, which corresponds to the volume of the union of the rectangles. This is a celebrated problem in computational geometry known as \"Klee's measure problem\", and our work yields the first solution in the streaming model for dimensions greater than one.","PeriodicalId":92118,"journal":{"name":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","volume":"115 1","pages":"283-294"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213556.2213595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We consider the estimation of aggregates over a data stream of multidimensional axis-aligned rectangles. Rectangles are a basic primitive object in spatial databases, and efficient aggregation of rectangles is a fundamental task. The data stream model has emerged as a de facto model for processing massive databases in which the data resides in external memory or the cloud and is streamed through main memory. For a point p, let n(p) denote the sum of the weights of all rectangles in the stream that contain p. We give near-optimal solutions for basic problems, including (1) the k-th frequency moment Fk = ∑ points p|n(p)|k, (2)~the counting version of stabbing queries, which seeks an estimate of n(p) given p, and (3) identification of heavy-hitters, i.e., points p for which n(p) is large. An important special case of Fk is F0, which corresponds to the volume of the union of the rectangles. This is a celebrated problem in computational geometry known as "Klee's measure problem", and our work yields the first solution in the streaming model for dimensions greater than one.
空间数据流中的矩形高效聚合
我们考虑对多维轴对齐矩形数据流的聚合估计。矩形是空间数据库中一种基本的原语对象,矩形的高效聚合是空间数据库的基本任务。数据流模型已经成为处理海量数据库的实际模型,其中数据驻留在外部存储器或云中,并通过主存储器进行流处理。对于点p,设n(p)表示流中包含p的所有矩形的权重之和。我们给出了基本问题的近最优解,包括(1)第k次频率矩Fk =∑点p|n(p)|k,(2)~刺入查询的计数版本,它寻求给定p的n(p)的估计,以及(3)识别重磅点,即n(p)较大的点p。Fk的一个重要特例是F0,它对应于矩形并集的体积。这是计算几何中的一个著名问题,被称为“Klee测量问题”,我们的工作产生了大于1维的流模型中的第一个解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信