Bayesian non-parametric spatial prior for traffic crash risk mapping: A case study of Victoria, Australia

Pub Date : 2022-07-06 DOI:10.1111/anzs.12369
J.-B. Durand, F. Forbes, C.D. Phan, L. Truong, H.D. Nguyen, F. Dama
{"title":"Bayesian non-parametric spatial prior for traffic crash risk mapping: A case study of Victoria, Australia","authors":"J.-B. Durand,&nbsp;F. Forbes,&nbsp;C.D. Phan,&nbsp;L. Truong,&nbsp;H.D. Nguyen,&nbsp;F. Dama","doi":"10.1111/anzs.12369","DOIUrl":null,"url":null,"abstract":"<p>We develop a Bayesian non-parametric (BNP) model coupled with Markov random fields (MRFs) for risk mapping, to infer homogeneous spatial regions in terms of risks. In contrast to most existing methods, the proposed approach does not require an arbitrary commitment to a specified number of risk classes and determines their risk levels automatically. We consider settings in which the relevant information are counts and propose a so-called BNP hidden MRF (BNP-HMRF) model that is able to handle such data. The model inference is carried out using a variational Bayes expectation–maximisation algorithm and the approach is illustrated on traffic crash data in the state of Victoria, Australia. The obtained results corroborate well with the traffic safety literature. More generally, the model presented here for risk mapping offers an effective, convenient and fast way to conduct partition of spatially localised count data.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12369","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We develop a Bayesian non-parametric (BNP) model coupled with Markov random fields (MRFs) for risk mapping, to infer homogeneous spatial regions in terms of risks. In contrast to most existing methods, the proposed approach does not require an arbitrary commitment to a specified number of risk classes and determines their risk levels automatically. We consider settings in which the relevant information are counts and propose a so-called BNP hidden MRF (BNP-HMRF) model that is able to handle such data. The model inference is carried out using a variational Bayes expectation–maximisation algorithm and the approach is illustrated on traffic crash data in the state of Victoria, Australia. The obtained results corroborate well with the traffic safety literature. More generally, the model presented here for risk mapping offers an effective, convenient and fast way to conduct partition of spatially localised count data.

Abstract Image

分享
查看原文
交通碰撞风险映射的贝叶斯非参数空间先验:以澳大利亚维多利亚州为例
我们开发了一个贝叶斯非参数(BNP)模型,结合马尔可夫随机场(mrf)进行风险映射,以推断风险的均匀空间区域。与大多数现有方法相比,所提出的方法不需要对指定数量的风险类别进行任意承诺,并自动确定其风险级别。我们考虑了相关信息计数的设置,并提出了能够处理此类数据的所谓BNP隐藏MRF (BNP- hmrf)模型。模型推理使用变分贝叶斯期望最大化算法进行,该方法在澳大利亚维多利亚州的交通事故数据上进行了说明。所得结果与交通安全文献吻合较好。更一般地说,本文提出的风险映射模型为对空间局部化计数数据进行分区提供了一种有效、方便、快速的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信