On forward iterated Hausdorffness and development of embryo from zygote in bitopological dynamical systems

Q4 Mathematics
Santanu Acharjee, K. Goswami, H. Sarmah
{"title":"On forward iterated Hausdorffness and development of embryo from zygote in bitopological dynamical systems","authors":"Santanu Acharjee, K. Goswami, H. Sarmah","doi":"10.31926/but.mif.2020.13.62.2.3","DOIUrl":null,"url":null,"abstract":"Topological dynamical system is an area of dynamical system to investigate dynamical properties in terms of a topological space. Nada and Zohny [Nada, S.I. and Zohny, H., An application of relative topology in biology, Chaos, Solitons and Fractals. 42 (2009), 202-204] applied topological dynamical system to explore the development process of an embryo from the zygote until birth and made three conjectures. In this paper, we disprove conjecture 3 of Nada and Zohny [Nada, S.I. and Zohny, H., An application of relative topology in biology, Chaos, Solitons and Fractals. 42 (2009), 202-204] by applying some of our mathematical results of bitopological dynamical system. Also, we introduce forward iterated Hausdorff space, backward iterated Hausdorff space, pairwise iterated Hausdor_ space and establish relations between them in bitopological dynamical system. We formulate the function that represents cell division (specially, mitosis) and using this function we show that in the development process of a human baby from the zygote until its birth, there is a stage where the developing stage is forward iterated Hausdorff","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":"120 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2020.13.62.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

Topological dynamical system is an area of dynamical system to investigate dynamical properties in terms of a topological space. Nada and Zohny [Nada, S.I. and Zohny, H., An application of relative topology in biology, Chaos, Solitons and Fractals. 42 (2009), 202-204] applied topological dynamical system to explore the development process of an embryo from the zygote until birth and made three conjectures. In this paper, we disprove conjecture 3 of Nada and Zohny [Nada, S.I. and Zohny, H., An application of relative topology in biology, Chaos, Solitons and Fractals. 42 (2009), 202-204] by applying some of our mathematical results of bitopological dynamical system. Also, we introduce forward iterated Hausdorff space, backward iterated Hausdorff space, pairwise iterated Hausdor_ space and establish relations between them in bitopological dynamical system. We formulate the function that represents cell division (specially, mitosis) and using this function we show that in the development process of a human baby from the zygote until its birth, there is a stage where the developing stage is forward iterated Hausdorff
生物形态学动力系统中受精卵的正向迭代豪斯多夫性与胚胎发育
拓扑动力系统是动力系统在拓扑空间中研究动力特性的一个领域。Nada and Zohny [Nada, S.I. and Zohny, H., a application of relative topology in biology, Chaos, Solitons and Fractals. 42(2009), 202-204]应用拓扑动力系统探索胚胎从合子到出生的发育过程,并提出了三个猜想。在本文中,我们用我们的一些双拓扑动力系统的数学结果反驳了Nada和Zohny的猜想3 [Nada, S.I.和Zohny, H.,相对拓扑在生物学中的应用,混沌,孤子和分形。42(2009),202-204]。同时,在双拓扑动力系统中引入了前向迭代Hausdorff空间、后向迭代Hausdorff空间、两两迭代Hausdor_空间,并建立了它们之间的关系。我们制定了代表细胞分裂(特别是有丝分裂)的函数,并使用这个函数我们表明,在人类婴儿从受精卵到出生的发育过程中,有一个发育阶段向前迭代Hausdorff
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信