Atom cloud detection and segmentation using a deep neural network

L. Hofer, Milan Krstaji'c, P'eter Juh'asz, A. L. Marchant, Robert P. Smith
{"title":"Atom cloud detection and segmentation using a deep neural network","authors":"L. Hofer, Milan Krstaji'c, P'eter Juh'asz, A. L. Marchant, Robert P. Smith","doi":"10.1088/2632-2153/abf5ee","DOIUrl":null,"url":null,"abstract":"We use a deep neural network to detect and place region-of-interest boxes around ultracold atom clouds in absorption and fluorescence images---with the ability to identify and bound multiple clouds within a single image. The neural network also outputs segmentation masks that identify the size, shape and orientation of each cloud from which we extract the clouds' Gaussian parameters. This allows 2D Gaussian fits to be reliably seeded thereby enabling fully automatic image processing.","PeriodicalId":18148,"journal":{"name":"Mach. Learn. Sci. Technol.","volume":"2 1","pages":"45008"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mach. Learn. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/abf5ee","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We use a deep neural network to detect and place region-of-interest boxes around ultracold atom clouds in absorption and fluorescence images---with the ability to identify and bound multiple clouds within a single image. The neural network also outputs segmentation masks that identify the size, shape and orientation of each cloud from which we extract the clouds' Gaussian parameters. This allows 2D Gaussian fits to be reliably seeded thereby enabling fully automatic image processing.
原子云检测和分割使用深度神经网络
我们使用深度神经网络在吸收和荧光图像中检测和放置超冷原子云周围的感兴趣区域框-能够在单个图像中识别和绑定多个云。神经网络还输出分割掩码,识别每个云的大小、形状和方向,从中提取云的高斯参数。这允许二维高斯拟合可靠地播种,从而实现全自动图像处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信