{"title":"Two-dimensional inverse scattering for quasi-linear biharmonic operator","authors":"M. Harju, Jaakko Kultima, V. Serov, Teemu Tyni","doi":"10.3934/IPI.2021026","DOIUrl":null,"url":null,"abstract":"The subject of this work concerns the classical direct and inverse scattering problems for quasi-linear perturbations of the two-dimensional biharmonic operator. The quasi-linear perturbations of the first and zero order might be complex-valued and singular. We show the existence of the scattering solutions to the direct scattering problem in the Sobolev space \\begin{document}$ W^1_{\\infty}( \\mathbb{{R}}^2) $\\end{document}. Then the inverse scattering problem can be formulated as follows: does the knowledge of the far field pattern uniquely determine the unknown coefficients for given differential operator? It turns out that the answer to this classical question is affirmative for quasi-linear perturbations of the biharmonic operator. Moreover, we present a numerical method for the reconstruction of unknown coefficients, which from the practical point of view can be thought of as recovery of the coefficients from fixed energy measurements.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"51 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/IPI.2021026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3
Abstract
The subject of this work concerns the classical direct and inverse scattering problems for quasi-linear perturbations of the two-dimensional biharmonic operator. The quasi-linear perturbations of the first and zero order might be complex-valued and singular. We show the existence of the scattering solutions to the direct scattering problem in the Sobolev space \begin{document}$ W^1_{\infty}( \mathbb{{R}}^2) $\end{document}. Then the inverse scattering problem can be formulated as follows: does the knowledge of the far field pattern uniquely determine the unknown coefficients for given differential operator? It turns out that the answer to this classical question is affirmative for quasi-linear perturbations of the biharmonic operator. Moreover, we present a numerical method for the reconstruction of unknown coefficients, which from the practical point of view can be thought of as recovery of the coefficients from fixed energy measurements.
The subject of this work concerns the classical direct and inverse scattering problems for quasi-linear perturbations of the two-dimensional biharmonic operator. The quasi-linear perturbations of the first and zero order might be complex-valued and singular. We show the existence of the scattering solutions to the direct scattering problem in the Sobolev space \begin{document}$ W^1_{\infty}( \mathbb{{R}}^2) $\end{document}. Then the inverse scattering problem can be formulated as follows: does the knowledge of the far field pattern uniquely determine the unknown coefficients for given differential operator? It turns out that the answer to this classical question is affirmative for quasi-linear perturbations of the biharmonic operator. Moreover, we present a numerical method for the reconstruction of unknown coefficients, which from the practical point of view can be thought of as recovery of the coefficients from fixed energy measurements.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.