Some Jerk Systems with Hidden Chaotic Dynamics

Bingxue Li, B. Sang, Mei Liu, Xiaoyan Hu, Xue Zhang, Ning Wang
{"title":"Some Jerk Systems with Hidden Chaotic Dynamics","authors":"Bingxue Li, B. Sang, Mei Liu, Xiaoyan Hu, Xue Zhang, Ning Wang","doi":"10.1142/s0218127423500694","DOIUrl":null,"url":null,"abstract":"Hidden chaotic attractors is a fascinating subject of study in the field of nonlinear dynamics. Jerk systems with a stable equilibrium may produce hidden chaotic attractors. This paper seeks to enhance our understanding of hidden chaotic dynamics in jerk systems of three variables [Formula: see text] with nonlinear terms from a predefined set: [Formula: see text], where [Formula: see text] is a real parameter. The behavior of the systems is analyzed using rigorous Hopf bifurcation analysis and numerical simulations, including phase portraits, bifurcation diagrams, Lyapunov spectra, and basins of attraction. For certain jerk systems with a subcritical Hopf bifurcation, adjusting the coefficient of a linear term can lead to hidden chaotic behavior. The adjustment modifies the subcritical Hopf equilibrium, transforming it from an unstable state to a stable one. One such jerk system, while maintaining its equilibrium stability, experiences a sudden transition from a point attractor to a stable limit cycle. The latter undergoes a period-doubling route to chaos, which may be followed by a reverse route. Therefore, by perturbing certain jerk systems with a subcritical Hopf equilibrium, we can gain insights into the formation of hidden chaotic attractors. Furthermore, adjusting the coefficient of the nonlinear term [Formula: see text] in certain systems with a stable equilibrium can also lead to period-doubling routes or reverse period-doubling routes to hidden chaotic dynamics. Both findings are significant for our understanding of the hidden chaotic dynamics that can emerge from nonlinear systems with a stable equilibrium.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423500694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hidden chaotic attractors is a fascinating subject of study in the field of nonlinear dynamics. Jerk systems with a stable equilibrium may produce hidden chaotic attractors. This paper seeks to enhance our understanding of hidden chaotic dynamics in jerk systems of three variables [Formula: see text] with nonlinear terms from a predefined set: [Formula: see text], where [Formula: see text] is a real parameter. The behavior of the systems is analyzed using rigorous Hopf bifurcation analysis and numerical simulations, including phase portraits, bifurcation diagrams, Lyapunov spectra, and basins of attraction. For certain jerk systems with a subcritical Hopf bifurcation, adjusting the coefficient of a linear term can lead to hidden chaotic behavior. The adjustment modifies the subcritical Hopf equilibrium, transforming it from an unstable state to a stable one. One such jerk system, while maintaining its equilibrium stability, experiences a sudden transition from a point attractor to a stable limit cycle. The latter undergoes a period-doubling route to chaos, which may be followed by a reverse route. Therefore, by perturbing certain jerk systems with a subcritical Hopf equilibrium, we can gain insights into the formation of hidden chaotic attractors. Furthermore, adjusting the coefficient of the nonlinear term [Formula: see text] in certain systems with a stable equilibrium can also lead to period-doubling routes or reverse period-doubling routes to hidden chaotic dynamics. Both findings are significant for our understanding of the hidden chaotic dynamics that can emerge from nonlinear systems with a stable equilibrium.
一些具有隐藏混沌动力学的激振系统
隐混沌吸引子是非线性动力学领域中一个引人入胜的研究课题。具有稳定平衡的激振系统可能产生隐藏的混沌吸引子。本文旨在增强我们对三变量[公式:见文]的推力系统中的隐藏混沌动力学的理解,其中非线性项来自预定义集合:[公式:见文],其中[公式:见文]是一个实参数。使用严格的Hopf分岔分析和数值模拟分析了系统的行为,包括相肖像,分岔图,李雅普诺夫光谱和吸引力盆地。对于一类具有次临界Hopf分岔的激振系统,调整某一线性项的系数会导致系统产生隐混沌行为。这种调整改变了亚临界Hopf平衡,使其从不稳定状态转变为稳定状态。一个这样的系统,在保持平衡稳定性的同时,经历了从点吸引子到稳定极限环的突然转变。后者经历了一个周期加倍的混乱路线,随后可能是一个相反的路线。因此,通过扰动某些具有亚临界Hopf平衡的激振系统,我们可以深入了解隐藏混沌吸引子的形成。此外,在某些具有稳定平衡的系统中,调整非线性项的系数[公式:见文]也会导致周期加倍路径或反向周期加倍路径变为隐藏混沌动力学。这两个发现对于我们理解具有稳定平衡的非线性系统中可能出现的隐藏混沌动力学具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信