Discriminative figure-centric models for joint action localization and recognition

Tian Lan, Yang Wang, Greg Mori
{"title":"Discriminative figure-centric models for joint action localization and recognition","authors":"Tian Lan, Yang Wang, Greg Mori","doi":"10.1109/ICCV.2011.6126472","DOIUrl":null,"url":null,"abstract":"In this paper we develop an algorithm for action recognition and localization in videos. The algorithm uses a figure-centric visual word representation. Different from previous approaches it does not require reliable human detection and tracking as input. Instead, the person location is treated as a latent variable that is inferred simultaneously with action recognition. A spatial model for an action is learned in a discriminative fashion under a figure-centric representation. Temporal smoothness over video sequences is also enforced. We present results on the UCF-Sports dataset, verifying the effectiveness of our model in situations where detection and tracking of individuals is challenging.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"246","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 246

Abstract

In this paper we develop an algorithm for action recognition and localization in videos. The algorithm uses a figure-centric visual word representation. Different from previous approaches it does not require reliable human detection and tracking as input. Instead, the person location is treated as a latent variable that is inferred simultaneously with action recognition. A spatial model for an action is learned in a discriminative fashion under a figure-centric representation. Temporal smoothness over video sequences is also enforced. We present results on the UCF-Sports dataset, verifying the effectiveness of our model in situations where detection and tracking of individuals is challenging.
联合动作定位与识别的判别图形中心模型
本文提出了一种视频动作识别与定位算法。该算法使用以图形为中心的视觉单词表示。与以前的方法不同,它不需要可靠的人工检测和跟踪作为输入。相反,人的位置被视为与动作识别同时推断的潜在变量。动作的空间模型是在以图形为中心的表征下以判别方式学习的。视频序列的时间平滑性也被强制执行。我们在UCF-Sports数据集上展示了结果,验证了我们的模型在个体检测和跟踪具有挑战性的情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信