Leveraging Neurophysiological Information to Augment Interpretation of Responses to Vulnerable Robot Behaviors

Amanda K. Holloman, William Egbert, Pierce Stegman, Nicholas Cioli, Chris S. Crawford
{"title":"Leveraging Neurophysiological Information to Augment Interpretation of Responses to Vulnerable Robot Behaviors","authors":"Amanda K. Holloman, William Egbert, Pierce Stegman, Nicholas Cioli, Chris S. Crawford","doi":"10.1109/HRI.2019.8673290","DOIUrl":null,"url":null,"abstract":"Previous human-robot interaction (HRI) research has shown that trust, disclosure, and companionship may be influenced by a robot's verbal behavior. Measures used to interpret these key aspects of HRI commonly include surveys, observations, and user interviews. In this preliminary work, we aim to extend previous research by exploring the use of electroencephalography (EEG) to augment our understanding of participants' responses to vulnerable robot behaviors. We tested this method by obtaining EEG data from participants while they interacted with a robotic tutor. The robotic tutor was designed to exhibit high vulnerability (HV) or low vulnerability (LV) behaviors similar to a previous HRI study. Our preliminary results show that event-related potentials (ERPs) may provide insights into participants' early affective processing of vulnerable robot behaviors.","PeriodicalId":6600,"journal":{"name":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","volume":"84 1","pages":"566-567"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HRI.2019.8673290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Previous human-robot interaction (HRI) research has shown that trust, disclosure, and companionship may be influenced by a robot's verbal behavior. Measures used to interpret these key aspects of HRI commonly include surveys, observations, and user interviews. In this preliminary work, we aim to extend previous research by exploring the use of electroencephalography (EEG) to augment our understanding of participants' responses to vulnerable robot behaviors. We tested this method by obtaining EEG data from participants while they interacted with a robotic tutor. The robotic tutor was designed to exhibit high vulnerability (HV) or low vulnerability (LV) behaviors similar to a previous HRI study. Our preliminary results show that event-related potentials (ERPs) may provide insights into participants' early affective processing of vulnerable robot behaviors.
利用神经生理学信息来增加对脆弱机器人行为反应的解释
先前的人机交互(HRI)研究表明,信任、披露和陪伴可能会受到机器人语言行为的影响。用于解释HRI这些关键方面的措施通常包括调查、观察和用户访谈。在这项初步工作中,我们的目标是通过探索脑电图(EEG)的使用来扩展先前的研究,以增强我们对参与者对脆弱机器人行为的反应的理解。我们通过获取参与者与机器人导师互动时的脑电图数据来测试这种方法。机器人导师被设计为表现出类似于先前HRI研究的高脆弱性(HV)或低脆弱性(LV)行为。我们的初步结果表明,事件相关电位(ERPs)可能为参与者对机器人脆弱行为的早期情感处理提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信