Diffusion in the Anderson model in higher dimensions

P. Prelovšek, J. Herbrych
{"title":"Diffusion in the Anderson model in higher dimensions","authors":"P. Prelovšek, J. Herbrych","doi":"10.1103/PhysRevB.103.L241107","DOIUrl":null,"url":null,"abstract":"We present an extended microcanonical Lanczos method (MCLM) for a direct evaluation of the diffusion constant and its frequency dependence within the disordered Anderson model of noninteracting particles. The method allows to study systems beyond $10^6$ sites and we present results for diffusion in hypercubic lattices in $ d = 3- 7$ dimensions. Below the transition to localization, where we confirm dynamical scaling behaviour, of interest is a wide region of incoherent diffusion, similar to percolating phenomena and to interacting many-body localized systems.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.L241107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present an extended microcanonical Lanczos method (MCLM) for a direct evaluation of the diffusion constant and its frequency dependence within the disordered Anderson model of noninteracting particles. The method allows to study systems beyond $10^6$ sites and we present results for diffusion in hypercubic lattices in $ d = 3- 7$ dimensions. Below the transition to localization, where we confirm dynamical scaling behaviour, of interest is a wide region of incoherent diffusion, similar to percolating phenomena and to interacting many-body localized systems.
高维的安德森模型中的扩散
我们提出了一种扩展的微规范Lanczos方法(MCLM),用于直接评估非相互作用粒子的无序安德森模型中的扩散常数及其频率依赖性。该方法允许研究超过$10^6$位的系统,我们给出了在$ d = 3- $ 7$维的超立方晶格中的扩散结果。在向局部化过渡的下面,我们确认了动态标度行为,我们感兴趣的是一个广泛的非相干扩散区域,类似于渗透现象和相互作用的多体局部化系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信