A framework for accelerating neuromorphic-vision algorithms on FPGAs

M. DeBole, Ahmed Al-Maashri, M. Cotter, Chi-Li Yu, C. Chakrabarti, N. Vijaykrishnan
{"title":"A framework for accelerating neuromorphic-vision algorithms on FPGAs","authors":"M. DeBole, Ahmed Al-Maashri, M. Cotter, Chi-Li Yu, C. Chakrabarti, N. Vijaykrishnan","doi":"10.1109/ICCAD.2011.6105351","DOIUrl":null,"url":null,"abstract":"Implementations of neuromorphic algorithms are traditionally implemented on platforms which consume significant power, falling short of their biologically underpinnings. Recent improvements in FPGA technology have led to FPGAs becoming a platform in which these rapidly evolving algorithms can be implemented. Unfortunately, implementing designs on FPGAs still prove challenging for nonexperts, limiting their use in the neuroscience domain. In this paper, a FPGA framework is presented which enables neuroscientists to compose multi-FPGA systems for a cortical object classification model. This is demonstrated by mapping this algorithm onto two distinct platforms providing speedups of up to ∼28X over a reference CPU implementation.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2011.6105351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Implementations of neuromorphic algorithms are traditionally implemented on platforms which consume significant power, falling short of their biologically underpinnings. Recent improvements in FPGA technology have led to FPGAs becoming a platform in which these rapidly evolving algorithms can be implemented. Unfortunately, implementing designs on FPGAs still prove challenging for nonexperts, limiting their use in the neuroscience domain. In this paper, a FPGA framework is presented which enables neuroscientists to compose multi-FPGA systems for a cortical object classification model. This is demonstrated by mapping this algorithm onto two distinct platforms providing speedups of up to ∼28X over a reference CPU implementation.
基于fpga的神经形态视觉算法加速框架
传统上,神经形态算法的实现是在消耗大量能量的平台上实现的,缺乏其生物学基础。最近FPGA技术的改进使FPGA成为实现这些快速发展算法的平台。不幸的是,在fpga上实现设计对于非专家来说仍然具有挑战性,限制了它们在神经科学领域的应用。本文提出了一种FPGA框架,使神经科学家能够为皮质目标分类模型组成多个FPGA系统。通过将该算法映射到两个不同的平台上,可以在参考CPU实现上提供高达28倍的加速,从而证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信