{"title":"On some multiplicative properties of large difference sets","authors":"I. Shkredov","doi":"10.4153/s0008414x23000500","DOIUrl":null,"url":null,"abstract":"In our paper we study multiplicative properties of difference sets $A-A$ for large sets $A \\subseteq \\mathbb{Z}/q\\mathbb{Z}$ in the case of composite $q$. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008414x23000500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In our paper we study multiplicative properties of difference sets $A-A$ for large sets $A \subseteq \mathbb{Z}/q\mathbb{Z}$ in the case of composite $q$. We obtain a quantitative version of a result of A. Fish about the structure of the product sets $(A-A)(A-A)$. Also, we show that the multiplicative covering number of any difference set is always small.