Capacity of Finite-State Channels with Time-Invariant Deterministic Feedback

H. Permuter, T. Weissman, A. Goldsmith
{"title":"Capacity of Finite-State Channels with Time-Invariant Deterministic Feedback","authors":"H. Permuter, T. Weissman, A. Goldsmith","doi":"10.1109/ISIT.2006.261599","DOIUrl":null,"url":null,"abstract":"We consider channel coding with feedback for the general case where the feedback may be an arbitrary deterministic function of the output samples. Under the assumption that the channel states take values in a finite alphabet, we find an achievable rate and an upper bound on the capacity. We conclude by showing that when the channel is indecomposable, and has no intersymbol interference, its capacity is given by the limit of the maximum of the (normalized) directed information between the input XN and the output YN, i.e. C = limNrarrinfin/1N max I(XN rarr YN), where the maximization is over the causal conditioning probability Q(xN||kN-) defined in this paper","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":"4 1","pages":"64-68"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2006.261599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We consider channel coding with feedback for the general case where the feedback may be an arbitrary deterministic function of the output samples. Under the assumption that the channel states take values in a finite alphabet, we find an achievable rate and an upper bound on the capacity. We conclude by showing that when the channel is indecomposable, and has no intersymbol interference, its capacity is given by the limit of the maximum of the (normalized) directed information between the input XN and the output YN, i.e. C = limNrarrinfin/1N max I(XN rarr YN), where the maximization is over the causal conditioning probability Q(xN||kN-) defined in this paper
具有定常确定性反馈的有限状态信道容量
对于反馈可能是输出样本的任意确定性函数的一般情况,我们考虑带反馈的信道编码。在信道状态取值为有限字母的假设下,我们找到了一个可实现的速率和容量的上界。当信道不可分解且无码间干扰时,其容量由输入XN与输出YN之间(归一化)有向信息的最大值的极限给出,即C = limNrarrinfin/1N max I(XN rarr YN),其中最大值大于本文定义的因果条件概率Q(XN ||kN-)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信