Modal translation of substructural logics

Q1 Arts and Humanities
C. Hartonas
{"title":"Modal translation of substructural logics","authors":"C. Hartonas","doi":"10.1080/11663081.2019.1703469","DOIUrl":null,"url":null,"abstract":"ABSTRACT In an article dating back in 1992, Kosta Došen initiated a project of modal translations in substructural logics, aiming at generalising the well-known Gödel–McKinsey–Tarski translation of intuitionistic logic into S4. Došen's translation worked well for (variants of) BCI and stronger systems (BCW, BCK), but not for systems below BCI. Dropping structural rules results in logic systems without distribution. In this article, we show, via translation, that every substructural (indeed, every non-distributive) logic is a fragment of a corresponding sorted, residuated (multi) modal logic. At the conceptual and philosophical level, the translation provides a classical interpretation of the meaning of the logical operators of various non-distributive propositional calculi. Technically, it allows for an effortless transfer of results, such as compactness and the Löwenheim-Skolem property and it opens up new directions for deducing properties of substructural logic systems by establishing appropriate transfer theorems.","PeriodicalId":38573,"journal":{"name":"Journal of Applied Non-Classical Logics","volume":"6 1","pages":"16 - 49"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Non-Classical Logics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/11663081.2019.1703469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 7

Abstract

ABSTRACT In an article dating back in 1992, Kosta Došen initiated a project of modal translations in substructural logics, aiming at generalising the well-known Gödel–McKinsey–Tarski translation of intuitionistic logic into S4. Došen's translation worked well for (variants of) BCI and stronger systems (BCW, BCK), but not for systems below BCI. Dropping structural rules results in logic systems without distribution. In this article, we show, via translation, that every substructural (indeed, every non-distributive) logic is a fragment of a corresponding sorted, residuated (multi) modal logic. At the conceptual and philosophical level, the translation provides a classical interpretation of the meaning of the logical operators of various non-distributive propositional calculi. Technically, it allows for an effortless transfer of results, such as compactness and the Löwenheim-Skolem property and it opens up new directions for deducing properties of substructural logic systems by establishing appropriate transfer theorems.
子结构逻辑的模态翻译
在1992年的一篇文章中,Kosta Došen发起了子结构逻辑中的模态翻译项目,旨在将众所周知的Gödel-McKinsey-Tarski直觉逻辑翻译推广到S4。Došen的翻译对于BCI(变体)和更强的系统(BCW, BCK)工作良好,但对于低于BCI的系统则不适用。放弃结构规则导致逻辑系统没有分布。在本文中,我们通过翻译表明,每个子结构(实际上,每个非分配)逻辑都是相应的排序,剩余(多)模态逻辑的片段。在概念和哲学层面上,翻译提供了对各种非分配命题演算逻辑算子意义的经典解释。从技术上讲,它允许毫不费力地转移结果,如紧性和Löwenheim-Skolem性质,并通过建立适当的转移定理为推导子结构逻辑系统的性质开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Non-Classical Logics
Journal of Applied Non-Classical Logics Arts and Humanities-Philosophy
CiteScore
1.30
自引率
0.00%
发文量
8
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信