{"title":"Method of automorphic functions for an inverse problem of antiplane elasticity","authors":"Y. Antipov","doi":"10.1093/QJMAM/HBZ003","DOIUrl":null,"url":null,"abstract":"A nonlinear inverse problem of antiplane elasticity for a multiply connected domain is examined. It is required to determine the profile of $n$ uniformly stressed inclusions when the surrounding infinite body is subjected to antiplane uniform shear at infinity. A method of conformal mappings of circular multiply connected domains is employed. The conformal map is recovered by solving consequently two Riemann-Hilbert problems for piecewise analytic symmetric automorphic functions. For domains associated with the first class Schottky groups a series-form representation of a ($3n-4$) parametric family of conformal maps solving the problem is discovered. Numerical results for two and three uniformly stressed inclusions are reported and discussed.","PeriodicalId":92460,"journal":{"name":"The quarterly journal of mechanics and applied mathematics","volume":"18 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The quarterly journal of mechanics and applied mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/QJMAM/HBZ003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
A nonlinear inverse problem of antiplane elasticity for a multiply connected domain is examined. It is required to determine the profile of $n$ uniformly stressed inclusions when the surrounding infinite body is subjected to antiplane uniform shear at infinity. A method of conformal mappings of circular multiply connected domains is employed. The conformal map is recovered by solving consequently two Riemann-Hilbert problems for piecewise analytic symmetric automorphic functions. For domains associated with the first class Schottky groups a series-form representation of a ($3n-4$) parametric family of conformal maps solving the problem is discovered. Numerical results for two and three uniformly stressed inclusions are reported and discussed.