An area-maximum edge length trade-off for VSLI layout

Q4 Mathematics
Norbert Blum
{"title":"An area-maximum edge length trade-off for VSLI layout","authors":"Norbert Blum","doi":"10.1016/S0019-9958(85)80011-5","DOIUrl":null,"url":null,"abstract":"<div><p>We construct an <em>N</em>-node graph <em>G</em> which has (i) a layout with area <em>O</em>(<em>N</em>) and maximum edge length <em>O</em>(<em>N</em><sup>1/2</sup>), (ii) a layout with area <em>O</em>(<em>N</em><sup>5/4</sup>) and maximum edge length <em>O</em>(<em>N</em><sup>1/4</sup>). We prove for 1 ≤ <em>f</em>(<em>N</em>) ≤ (<em>O</em>(<em>N</em><sup>1/8</sup>) that any layout for <em>G</em> with area <em>Nf</em>(<em>N</em>) has an edge of length <em>Ω</em>(<em>N</em><sup>1/2</sup>/<em>f</em>(<em>N</em>)·log <em>N</em>). Hence <em>G</em> has no layout which is optimal with respect to both measures.</p></div>","PeriodicalId":38164,"journal":{"name":"信息与控制","volume":"66 1","pages":"Pages 45-52"},"PeriodicalIF":0.0000,"publicationDate":"1985-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0019-9958(85)80011-5","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信息与控制","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019995885800115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

We construct an N-node graph G which has (i) a layout with area O(N) and maximum edge length O(N1/2), (ii) a layout with area O(N5/4) and maximum edge length O(N1/4). We prove for 1 ≤ f(N) ≤ (O(N1/8) that any layout for G with area Nf(N) has an edge of length Ω(N1/2/f(N)·log N). Hence G has no layout which is optimal with respect to both measures.

VSLI布局的面积最大边长度权衡
我们构造了一个N节点图G,它具有(i)面积为O(N),最大边长为O(N1/2)的布局,(ii)面积为O(N5/4),最大边长为O(N1/4)的布局。我们证明了当1≤f(N)≤(O(N1/8)时,对于面积为Nf(N)的G,任何布局都有一条长度为Ω(N1/2/f(N)·log N)的边,因此G不存在两个度量都最优的布局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
信息与控制
信息与控制 Mathematics-Control and Optimization
CiteScore
1.50
自引率
0.00%
发文量
4623
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信