Existence of Nash equilibrium points for Markovian non-zero-sum stochastic differential games with unbounded coefficients

Pub Date : 2013-08-27 DOI:10.1080/17442508.2014.915973
S. Hamadène, Rui Mu
{"title":"Existence of Nash equilibrium points for Markovian non-zero-sum stochastic differential games with unbounded coefficients","authors":"S. Hamadène, Rui Mu","doi":"10.1080/17442508.2014.915973","DOIUrl":null,"url":null,"abstract":"This paper is related to non-zero-sum stochastic differential games in the Markovian framework. We show existence of a Nash equilibrium point for the game when the drift is no longer bounded and only satisfies a linear growth condition. The main tool is the notion of backward stochastic differential equations which, in our case, are multidimensional with continuous coefficient and stochastic linear growth.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2013-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17442508.2014.915973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

This paper is related to non-zero-sum stochastic differential games in the Markovian framework. We show existence of a Nash equilibrium point for the game when the drift is no longer bounded and only satisfies a linear growth condition. The main tool is the notion of backward stochastic differential equations which, in our case, are multidimensional with continuous coefficient and stochastic linear growth.
分享
查看原文
系数无界的马尔可夫非零和随机微分对策纳什平衡点的存在性
本文研究了马尔可夫框架下的非零和随机微分对策。我们证明了当漂移不再有界且仅满足线性增长条件时,博弈存在纳什平衡点。主要的工具是倒向随机微分方程的概念,在我们的例子中,它是多维的,具有连续系数和随机线性增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信