Marcelo Eidi Imamura, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, A. O. Artero, M. A. Piteri
{"title":"DETECÇÃO E RECONHECIMENTO DE PLACAS DE LICENCIAMENTO VEICULAR EM TEMPO REAL USANDO CNN","authors":"Marcelo Eidi Imamura, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, A. O. Artero, M. A. Piteri","doi":"10.5747/ce.2021.v13.n1.e353","DOIUrl":null,"url":null,"abstract":"Brazil has a large fleet of vehicles running daily along urban roads and highways, which requires the use of some computational solution to assist in control and management. In this work we developed an application to detect and recognize real-time licenseplates with various application possibilities. The methodology developed in this work has three main stages: plate detection, character segmentation and recognition. For the detection step we used the YOLO library, which makes use of machine learning techniques to detect objects in real time. YOLO was trained using a dataset with plate images in different environments. In the segmentation stage, the individual characters contained in the plate were separated, using image processing methods. In the last stage, character recognition was performed using two convolutional neural networks, obtaining a hit rate of 83.33%.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n1.e353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Brazil has a large fleet of vehicles running daily along urban roads and highways, which requires the use of some computational solution to assist in control and management. In this work we developed an application to detect and recognize real-time licenseplates with various application possibilities. The methodology developed in this work has three main stages: plate detection, character segmentation and recognition. For the detection step we used the YOLO library, which makes use of machine learning techniques to detect objects in real time. YOLO was trained using a dataset with plate images in different environments. In the segmentation stage, the individual characters contained in the plate were separated, using image processing methods. In the last stage, character recognition was performed using two convolutional neural networks, obtaining a hit rate of 83.33%.