Tayyab Ahmed Shaikh, Syed Sajjad Hussain, M. Tanweer, M. Hashmani
{"title":"Broadening Selection Competitive Constraint Handling Algorithm for Faster Convergence","authors":"Tayyab Ahmed Shaikh, Syed Sajjad Hussain, M. Tanweer, M. Hashmani","doi":"10.6688/JISE.202011_36(6).0011","DOIUrl":null,"url":null,"abstract":"In this paper, a new algorithm incorporating broadening selection strategy in competitive constraint handling paradigm for finding the optimum solution in constrained problems has been proposed, referred as Broadening Selection Competitive Constraint Handling (BSCCH). Although, competitive constraint handling approaches have proved to be very efficient, but they lack faster convergence due to offspring generation from random individuals. By incorporating selection strategy such as broadening selection in the competitive approach, better results are obtained and convergence rate is improved significantly. Incorporating said strategy, the BSCCH algorithm has been proposed which is generic in nature and can be coupled with various evolutionary algorithms. In this study, the BSCCH algorithm has been coupled with Differential Evolution algorithm as a proof of concept because it is found to be an efficient algorithm in the literature for constrained optimization problems. The proposed algorithm has been evaluated using 24 benchmark functions. The mean closure performance of the BSCCH algorithm is compared against seven selected state-of-the-art algorithms, namely Differential Evolution with Adaptive Trial Vector Generation Strategy and Cluster-replacement-based Feasibility Rule (CACDE), Improved Teaching Learning Based Optimization (ITLBO), Modified Global Best Artificial Bee Colony (MGABC), Stochastic Ranking Differential Evolution (SRDE), Novel Differential Evolution (NDE), Partical Swarm Optimization for solving engineering problems - a new constraint handling mechanism (CVI-PSO) and Ensemble of Constraint Handling Techniques (ECHT). The median convergence traces have been compared with two different algorithms based on differential evolution, i:e: Ensemble of Constraint Handling Techniques (ECHT) and Stochastic Ranking Differential Evolution (SRDE). ECHT is considered to be a flagship ensemble technique till date for constrained optimization problems, whereas SRDE employs a parent selection mechanism for constrained optimization. The proposed algorithm is found to provide better solutions and achieve significantly faster convergence in most of the problems.","PeriodicalId":50177,"journal":{"name":"Journal of Information Science and Engineering","volume":"1 1","pages":"1293-1314"},"PeriodicalIF":0.5000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.6688/JISE.202011_36(6).0011","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a new algorithm incorporating broadening selection strategy in competitive constraint handling paradigm for finding the optimum solution in constrained problems has been proposed, referred as Broadening Selection Competitive Constraint Handling (BSCCH). Although, competitive constraint handling approaches have proved to be very efficient, but they lack faster convergence due to offspring generation from random individuals. By incorporating selection strategy such as broadening selection in the competitive approach, better results are obtained and convergence rate is improved significantly. Incorporating said strategy, the BSCCH algorithm has been proposed which is generic in nature and can be coupled with various evolutionary algorithms. In this study, the BSCCH algorithm has been coupled with Differential Evolution algorithm as a proof of concept because it is found to be an efficient algorithm in the literature for constrained optimization problems. The proposed algorithm has been evaluated using 24 benchmark functions. The mean closure performance of the BSCCH algorithm is compared against seven selected state-of-the-art algorithms, namely Differential Evolution with Adaptive Trial Vector Generation Strategy and Cluster-replacement-based Feasibility Rule (CACDE), Improved Teaching Learning Based Optimization (ITLBO), Modified Global Best Artificial Bee Colony (MGABC), Stochastic Ranking Differential Evolution (SRDE), Novel Differential Evolution (NDE), Partical Swarm Optimization for solving engineering problems - a new constraint handling mechanism (CVI-PSO) and Ensemble of Constraint Handling Techniques (ECHT). The median convergence traces have been compared with two different algorithms based on differential evolution, i:e: Ensemble of Constraint Handling Techniques (ECHT) and Stochastic Ranking Differential Evolution (SRDE). ECHT is considered to be a flagship ensemble technique till date for constrained optimization problems, whereas SRDE employs a parent selection mechanism for constrained optimization. The proposed algorithm is found to provide better solutions and achieve significantly faster convergence in most of the problems.
期刊介绍:
The Journal of Information Science and Engineering is dedicated to the dissemination of information on computer science, computer engineering, and computer systems. This journal encourages articles on original research in the areas of computer hardware, software, man-machine interface, theory and applications. tutorial papers in the above-mentioned areas, and state-of-the-art papers on various aspects of computer systems and applications.