High-Level Synthesis Toolchain "Theseus" for Multichip Reconfigurable Computer Systems

Q2 Computer Science
{"title":"High-Level Synthesis Toolchain \"Theseus\" for Multichip Reconfigurable Computer Systems","authors":"","doi":"10.14529/jsfi230202","DOIUrl":null,"url":null,"abstract":"In the paper we consider the high-level synthesis toolchain for transformation of programs written in C (the standard ISO/IEC 9899:1999) into configuration files of field programmable gate arrays (FPGAs) used in multichip reconfigurable computer systems. Unlike most academic (DWARV, BAMBU, LEGUP) and commercial (CatapultC, Vivado HLS, Vivado Vitis) high-level synthesis tools, “Theseus” uses the original methodology of transformation (porting) sequential calculations into a parallel-pipeline configuration of FPGA hardware. For a sequential program, an information graph is created and transformed into the maximally parallel structure, which is then ported to a specified configuration of the reconfigurable computer system using formal methods of reduction of performance and hardware costs without marking the source text with auxiliary parallelization directives. The distinctive feature of the approach is a significantly smaller number of analyzed variants in comparison to parallelizing compilers. Due to this, it is possible to reduce the porting time of sequential programs in the synthesis of solutions for reconfigurable computer systems with a set of FPGA chips interconnected by a spatial communication system. In the paper we show the results of porting a number of application tasks to the architecture of various reconfigurable computer systems using the proposed “Theseus” toolchain.","PeriodicalId":52144,"journal":{"name":"Supercomputing Frontiers and Innovations","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomputing Frontiers and Innovations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi230202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper we consider the high-level synthesis toolchain for transformation of programs written in C (the standard ISO/IEC 9899:1999) into configuration files of field programmable gate arrays (FPGAs) used in multichip reconfigurable computer systems. Unlike most academic (DWARV, BAMBU, LEGUP) and commercial (CatapultC, Vivado HLS, Vivado Vitis) high-level synthesis tools, “Theseus” uses the original methodology of transformation (porting) sequential calculations into a parallel-pipeline configuration of FPGA hardware. For a sequential program, an information graph is created and transformed into the maximally parallel structure, which is then ported to a specified configuration of the reconfigurable computer system using formal methods of reduction of performance and hardware costs without marking the source text with auxiliary parallelization directives. The distinctive feature of the approach is a significantly smaller number of analyzed variants in comparison to parallelizing compilers. Due to this, it is possible to reduce the porting time of sequential programs in the synthesis of solutions for reconfigurable computer systems with a set of FPGA chips interconnected by a spatial communication system. In the paper we show the results of porting a number of application tasks to the architecture of various reconfigurable computer systems using the proposed “Theseus” toolchain.
用于多芯片可重构计算机系统的高级综合工具链“Theseus”
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Supercomputing Frontiers and Innovations
Supercomputing Frontiers and Innovations Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊介绍: The Journal of Supercomputing Frontiers and Innovations (JSFI) is a new peer reviewed publication that addresses the urgent need for greater dissemination of research and development findings and results at the leading edge of high performance computing systems, highly parallel methods, and extreme scaled applications. Key topic areas germane include, but not limited to: Enabling technologies for high performance computing Future generation supercomputer architectures Extreme-scale concepts beyond conventional practices including exascale Parallel programming models, interfaces, languages, libraries, and tools Supercomputer applications and algorithms Distributed operating systems, kernels, supervisors, and virtualization for highly scalable computing Scalable runtime systems software Methods and means of supercomputer system management, administration, and monitoring Mass storage systems, protocols, and allocation Energy and power minimization for very large deployed computers Resilience, reliability, and fault tolerance for future generation highly parallel computing systems Parallel performance and correctness debugging Scientific visualization for massive data and computing both external and in situ Education in high performance computing and computational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信