Brian C. Lee, Ayushi Sinha, N. Varble, W. Pritchard, J. Karanian, B. Wood, T. Bydlon
{"title":"Breathing-Compensated Neural Networks for Real Time C-Arm Pose Estimation in Lung CT-Fluoroscopy Registration","authors":"Brian C. Lee, Ayushi Sinha, N. Varble, W. Pritchard, J. Karanian, B. Wood, T. Bydlon","doi":"10.1109/ISBI52829.2022.9761705","DOIUrl":null,"url":null,"abstract":"Augmentation of interventional c-arm fluoroscopy using information extracted from pre-operative imaging has the potential to reduce procedure times and improve patient outcomes in minimally invasive peripheral lung procedures, where breathing motion, small airways, and anatomical variation create a challenging environment for planned pathway navigation. Extraction of the rigid c-arm pose relative to preoperative images is a crucial prerequisite; however, accurate 2D-3D fluoroscopy-CT soft tissue registration in the presence of natural deformable patient motion remains challenging. We propose to train a patient-specific neural network on synthetic fluoroscopy derived from the patient’s pre-operative CT, augmented by a generalized breathing motion model, to predict c-arm pose. Our model includes an image supervision path that infers the x-ray projection geometry, providing training stability across patients. We train our model on synthetic fluoroscopy generated from preclinical swine CT and we evaluate on synthetic and real fluoroscopy.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"25 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Augmentation of interventional c-arm fluoroscopy using information extracted from pre-operative imaging has the potential to reduce procedure times and improve patient outcomes in minimally invasive peripheral lung procedures, where breathing motion, small airways, and anatomical variation create a challenging environment for planned pathway navigation. Extraction of the rigid c-arm pose relative to preoperative images is a crucial prerequisite; however, accurate 2D-3D fluoroscopy-CT soft tissue registration in the presence of natural deformable patient motion remains challenging. We propose to train a patient-specific neural network on synthetic fluoroscopy derived from the patient’s pre-operative CT, augmented by a generalized breathing motion model, to predict c-arm pose. Our model includes an image supervision path that infers the x-ray projection geometry, providing training stability across patients. We train our model on synthetic fluoroscopy generated from preclinical swine CT and we evaluate on synthetic and real fluoroscopy.