{"title":"Outperformance and Tracking: Dynamic Asset Allocation for Active and Passive Portfolio Management","authors":"A. Al-Aradi, S. Jaimungal","doi":"10.1080/1350486X.2018.1507751","DOIUrl":null,"url":null,"abstract":"ABSTRACT Portfolio management problems are often divided into two types: active and passive, where the objective is to outperform and track a preselected benchmark, respectively. Here, we formulate and solve a dynamic asset allocation problem that combines these two objectives in a unified framework. We look to maximize the expected growth rate differential between the wealth of the investor’s portfolio and that of a performance benchmark while penalizing risk-weighted deviations from a given tracking portfolio. Using stochastic control techniques, we provide explicit closed-form expressions for the optimal allocation and we show how the optimal strategy can be related to the growth optimal portfolio. The admissible benchmarks encompass the class of functionally generated portfolios (FGPs), which include the market portfolio, as the only requirement is that they depend only on the prevailing asset values. Finally, some numerical experiments are presented to illustrate the risk–reward profile of the optimal allocation.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"38 1","pages":"268 - 294"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2018.1507751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 18
Abstract
ABSTRACT Portfolio management problems are often divided into two types: active and passive, where the objective is to outperform and track a preselected benchmark, respectively. Here, we formulate and solve a dynamic asset allocation problem that combines these two objectives in a unified framework. We look to maximize the expected growth rate differential between the wealth of the investor’s portfolio and that of a performance benchmark while penalizing risk-weighted deviations from a given tracking portfolio. Using stochastic control techniques, we provide explicit closed-form expressions for the optimal allocation and we show how the optimal strategy can be related to the growth optimal portfolio. The admissible benchmarks encompass the class of functionally generated portfolios (FGPs), which include the market portfolio, as the only requirement is that they depend only on the prevailing asset values. Finally, some numerical experiments are presented to illustrate the risk–reward profile of the optimal allocation.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.