Quantum Worst-Case to Average-Case Reductions for All Linear Problems

Vahid R. Asadi, Alexander Golovnev, Tom Gur, Igor Shinkar, Sathyawageeswar Subramanian
{"title":"Quantum Worst-Case to Average-Case Reductions for All Linear Problems","authors":"Vahid R. Asadi, Alexander Golovnev, Tom Gur, Igor Shinkar, Sathyawageeswar Subramanian","doi":"10.48550/arXiv.2212.03348","DOIUrl":null,"url":null,"abstract":"We study the problem of designing worst-case to average-case reductions for quantum algorithms. For all linear problems, we provide an explicit and efficient transformation of quantum algorithms that are only correct on a small (even sub-constant) fraction of their inputs into ones that are correct on all inputs. This stands in contrast to the classical setting, where such results are only known for a small number of specific problems or restricted computational models. En route, we obtain a tight $\\Omega(n^2)$ lower bound on the average-case quantum query complexity of the Matrix-Vector Multiplication problem. Our techniques strengthen and generalise the recently introduced additive combinatorics framework for classical worst-case to average-case reductions (STOC 2022) to the quantum setting. We rely on quantum singular value transformations to construct quantum algorithms for linear verification in superposition and learning Bogolyubov subspaces from noisy quantum oracles. We use these tools to prove a quantum local correction lemma, which lies at the heart of our reductions, based on a noise-robust probabilistic generalisation of Bogolyubov's lemma from additive combinatorics.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.03348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of designing worst-case to average-case reductions for quantum algorithms. For all linear problems, we provide an explicit and efficient transformation of quantum algorithms that are only correct on a small (even sub-constant) fraction of their inputs into ones that are correct on all inputs. This stands in contrast to the classical setting, where such results are only known for a small number of specific problems or restricted computational models. En route, we obtain a tight $\Omega(n^2)$ lower bound on the average-case quantum query complexity of the Matrix-Vector Multiplication problem. Our techniques strengthen and generalise the recently introduced additive combinatorics framework for classical worst-case to average-case reductions (STOC 2022) to the quantum setting. We rely on quantum singular value transformations to construct quantum algorithms for linear verification in superposition and learning Bogolyubov subspaces from noisy quantum oracles. We use these tools to prove a quantum local correction lemma, which lies at the heart of our reductions, based on a noise-robust probabilistic generalisation of Bogolyubov's lemma from additive combinatorics.
所有线性问题的量子最坏情况到平均情况约简
我们研究了设计量子算法的最坏情况到平均情况约简的问题。对于所有线性问题,我们提供了一种明确而有效的量子算法转换,将其仅在其输入的一小部分(甚至次常数)上正确转换为在所有输入上正确的量子算法。这与经典设置形成对比,在经典设置中,只有少数特定问题或受限制的计算模型才知道这样的结果。在此过程中,我们获得了矩阵-向量乘法问题的平均情况量子查询复杂度的紧$\Omega(n^2)$下界。我们的技术加强并推广了最近引入的用于经典最坏情况到平均情况约简(STOC 2022)的加性组合框架到量子设置。我们依靠量子奇异值变换来构建量子算法用于叠加中的线性验证和从噪声量子预言学习Bogolyubov子空间。我们使用这些工具来证明一个量子局部校正引理,这是我们约简的核心,基于来自加性组合学的Bogolyubov引理的噪声鲁棒概率推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信