{"title":"A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop Systems","authors":"Aysan Rasooli Oskooei, D. Down","doi":"10.1109/SC.Companion.2012.155","DOIUrl":null,"url":null,"abstract":"The scalability of Cloud infrastructures has significantly increased their applicability. Hadoop, which works based on a MapReduce model, provides for efficient processing of Big Data. This solution is being used widely by most Cloud providers. Hadoop schedulers are critical elements for providing desired performance levels. A scheduler assigns MapReduce tasks to Hadoop resources. There is a considerable challenge to schedule the growing number of tasks and resources in a scalable manner. Moreover, the potential heterogeneous nature of deployed Hadoop systems tends to increase this challenge. This paper analyzes the performance of widely used Hadoop schedulers including FIFO and Fair sharing and compares them with the COSHH (Classification and Optimization based Scheduler for Heterogeneous Hadoop) scheduler, which has been developed by the authors. Based on our insights, a hybrid solution is introduced, which selects appropriate scheduling algorithms for scalable and heterogeneous Hadoop systems with respect to the number of incoming jobs and available resources.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"39 1","pages":"1284-1291"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76
Abstract
The scalability of Cloud infrastructures has significantly increased their applicability. Hadoop, which works based on a MapReduce model, provides for efficient processing of Big Data. This solution is being used widely by most Cloud providers. Hadoop schedulers are critical elements for providing desired performance levels. A scheduler assigns MapReduce tasks to Hadoop resources. There is a considerable challenge to schedule the growing number of tasks and resources in a scalable manner. Moreover, the potential heterogeneous nature of deployed Hadoop systems tends to increase this challenge. This paper analyzes the performance of widely used Hadoop schedulers including FIFO and Fair sharing and compares them with the COSHH (Classification and Optimization based Scheduler for Heterogeneous Hadoop) scheduler, which has been developed by the authors. Based on our insights, a hybrid solution is introduced, which selects appropriate scheduling algorithms for scalable and heterogeneous Hadoop systems with respect to the number of incoming jobs and available resources.
云基础设施的可伸缩性大大提高了它们的适用性。Hadoop基于MapReduce模型,提供了对大数据的高效处理。这种解决方案被大多数云提供商广泛使用。Hadoop调度器是提供所需性能级别的关键元素。调度程序将MapReduce任务分配给Hadoop资源。以可伸缩的方式安排越来越多的任务和资源是一个相当大的挑战。此外,已部署Hadoop系统的潜在异构特性往往会增加这一挑战。分析了先进先出(FIFO)和公平共享(Fair sharing)等Hadoop调度程序的性能,并与作者开发的COSHH (Classification and Optimization based Scheduler for Heterogeneous Hadoop)调度程序进行了比较。基于我们的见解,介绍了一种混合解决方案,它根据传入作业和可用资源的数量为可扩展和异构Hadoop系统选择适当的调度算法。