Learning to Validate the Predictions of Black Box Machine Learning Models on Unseen Data

S. Redyuk, Sebastian Schelter, Tammo Rukat, V. Markl, F. Biessmann
{"title":"Learning to Validate the Predictions of Black Box Machine Learning Models on Unseen Data","authors":"S. Redyuk, Sebastian Schelter, Tammo Rukat, V. Markl, F. Biessmann","doi":"10.1145/3328519.3329126","DOIUrl":null,"url":null,"abstract":"When end users apply a machine learning (ML) model on new unlabeled data, it is difficult for them to decide whether they can trust its predictions. Errors or shifts in the target data can lead to hard-to-detect drops in the predictive quality of the model. We therefore propose an approach to assist non-ML experts working with pretrained ML models. Our approach estimates the change in prediction performance of a model on unseen target data. It does not require explicit distributional assumptions on the dataset shift between the training and target data. Instead, a domain expert can declaratively specify typical cases of dataset shift that she expects to observe in real-world data. Based on this information, we learn a performance predictor for pretrained black box models, which can be combined with the model, and automatically warns end users in case of unexpected performance drops. We demonstrate the effectiveness of our approach on two models -- logistic regression and a neural network, applied to several real-world datasets.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3328519.3329126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

When end users apply a machine learning (ML) model on new unlabeled data, it is difficult for them to decide whether they can trust its predictions. Errors or shifts in the target data can lead to hard-to-detect drops in the predictive quality of the model. We therefore propose an approach to assist non-ML experts working with pretrained ML models. Our approach estimates the change in prediction performance of a model on unseen target data. It does not require explicit distributional assumptions on the dataset shift between the training and target data. Instead, a domain expert can declaratively specify typical cases of dataset shift that she expects to observe in real-world data. Based on this information, we learn a performance predictor for pretrained black box models, which can be combined with the model, and automatically warns end users in case of unexpected performance drops. We demonstrate the effectiveness of our approach on two models -- logistic regression and a neural network, applied to several real-world datasets.
学习验证黑箱机器学习模型对未知数据的预测
当最终用户将机器学习(ML)模型应用于新的未标记数据时,他们很难决定是否可以信任其预测。目标数据中的错误或移位可能导致模型预测质量的难以检测的下降。因此,我们提出了一种方法来帮助非机器学习专家处理预训练的机器学习模型。我们的方法估计模型在未知目标数据上预测性能的变化。它不需要对训练数据和目标数据之间的数据集转移进行明确的分布假设。相反,领域专家可以声明性地指定她希望在实际数据中观察到的数据集转移的典型案例。基于这些信息,我们学习了预训练黑匣子模型的性能预测器,它可以与模型相结合,并在意外性能下降时自动警告最终用户。我们证明了我们的方法在两个模型上的有效性——逻辑回归和神经网络,应用于几个现实世界的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信