AliISA

F. Xiao, Zhen Wang, Haikuan Huang, Jun Huang, Xi Chen, Hongbo Deng, Minghui Qiu, Xiaoli Gong
{"title":"AliISA","authors":"F. Xiao, Zhen Wang, Haikuan Huang, Jun Huang, Xi Chen, Hongbo Deng, Minghui Qiu, Xiaoli Gong","doi":"10.1145/3331184.3331409","DOIUrl":null,"url":null,"abstract":"Online shopping has been a habit of more and more people, while most users are unable to craft an informative query, and thus it often takes a long search session to satisfy their purchase intents. We present AliISA - a shopping assistant which offers users some tips to further specify their queries during a search session. With such an interactive search, users tend to find targeted items with fewer page requests, which often means a better user experience. Currently, AliISA assists tens of millions of users per day, earns more usage than existing systems, and consequently brings in a 5% improvement in CVR. In this paper, we present our system, describe the underlying techniques, and discuss our experience in stabilizing reinforcement learning under an E-commerce environment.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Online shopping has been a habit of more and more people, while most users are unable to craft an informative query, and thus it often takes a long search session to satisfy their purchase intents. We present AliISA - a shopping assistant which offers users some tips to further specify their queries during a search session. With such an interactive search, users tend to find targeted items with fewer page requests, which often means a better user experience. Currently, AliISA assists tens of millions of users per day, earns more usage than existing systems, and consequently brings in a 5% improvement in CVR. In this paper, we present our system, describe the underlying techniques, and discuss our experience in stabilizing reinforcement learning under an E-commerce environment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信