{"title":"MiniGraph: Querying Big Graphs with a Single Machine","authors":"Xiaoke Zhu, Yang Liu, Shuhao Liu, W. Fan","doi":"10.14778/3598581.3598590","DOIUrl":null,"url":null,"abstract":"This paper presents MiniGraph, an out-of-core system for querying big graphs with a single machine. As opposed to previous single-machine graph systems, MiniGraph proposes a pipelined architecture to overlap I/O and CPU operations, and improves multi-core parallelism. It also introduces a hybrid model to support both vertex-centric and graph-centric parallel computations, to simplify parallel graph programming, speed up beyond-neighborhood computations, and parallelize computations within each subgraph. The model induces a two-level parallel execution model to explore both inter-subgraph and intra-subgraph parallelism. Moreover, MiniGraph develops new optimization techniques under its architecture. Using real-life graphs of different types, we show that MiniGraph is up to 76.1x faster than prior out-of-core systems, and performs better than some multi-machine systems that use up to 12 machines.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3598581.3598590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents MiniGraph, an out-of-core system for querying big graphs with a single machine. As opposed to previous single-machine graph systems, MiniGraph proposes a pipelined architecture to overlap I/O and CPU operations, and improves multi-core parallelism. It also introduces a hybrid model to support both vertex-centric and graph-centric parallel computations, to simplify parallel graph programming, speed up beyond-neighborhood computations, and parallelize computations within each subgraph. The model induces a two-level parallel execution model to explore both inter-subgraph and intra-subgraph parallelism. Moreover, MiniGraph develops new optimization techniques under its architecture. Using real-life graphs of different types, we show that MiniGraph is up to 76.1x faster than prior out-of-core systems, and performs better than some multi-machine systems that use up to 12 machines.