Online service with delay

Y. Azar, Arun Ganesh, Rong Ge, Debmalya Panigrahi
{"title":"Online service with delay","authors":"Y. Azar, Arun Ganesh, Rong Ge, Debmalya Panigrahi","doi":"10.1145/3055399.3055475","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the online service with delay problem. In this problem, there are n points in a metric space that issue service requests over time, and a server that serves these requests. The goal is to minimize the sum of distance traveled by the server and the total delay (or a penalty function thereof) in serving the requests. This problem models the fundamental tradeoff between batching requests to improve locality and reducing delay to improve response time, that has many applications in operations management, operating systems, logistics, supply chain management, and scheduling. Our main result is to show a poly-logarithmic competitive ratio for the online service with delay problem. This result is obtained by an algorithm that we call the preemptive service algorithm. The salient feature of this algorithm is a process called preemptive service, which uses a novel combination of (recursive) time forwarding and spatial exploration on a metric space. We also generalize our results to k > 1 servers, and obtain stronger results for special metrics such as uniform and star metrics that correspond to (weighted) paging problems.","PeriodicalId":20615,"journal":{"name":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3055399.3055475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

In this paper, we introduce the online service with delay problem. In this problem, there are n points in a metric space that issue service requests over time, and a server that serves these requests. The goal is to minimize the sum of distance traveled by the server and the total delay (or a penalty function thereof) in serving the requests. This problem models the fundamental tradeoff between batching requests to improve locality and reducing delay to improve response time, that has many applications in operations management, operating systems, logistics, supply chain management, and scheduling. Our main result is to show a poly-logarithmic competitive ratio for the online service with delay problem. This result is obtained by an algorithm that we call the preemptive service algorithm. The salient feature of this algorithm is a process called preemptive service, which uses a novel combination of (recursive) time forwarding and spatial exploration on a metric space. We also generalize our results to k > 1 servers, and obtain stronger results for special metrics such as uniform and star metrics that correspond to (weighted) paging problems.
有延迟的网上服务
本文介绍了具有延迟问题的在线业务。在这个问题中,度量空间中有n个点随时间发出服务请求,以及为这些请求提供服务的服务器。目标是最小化服务器在处理请求时所经过的距离和总延迟(或延迟的惩罚函数)的总和。这个问题模拟了批处理请求以改进局部性和减少延迟以改进响应时间之间的基本权衡,这在操作管理、操作系统、物流、供应链管理和调度中有许多应用程序。我们的主要结果是展示了具有延迟问题的在线服务的多对数竞争比。这个结果是通过一种算法得到的,我们称之为抢占式服务算法。该算法的显著特点是一个称为抢占式服务的过程,该过程在度量空间上使用了(递归)时间转发和空间探索的新颖组合。我们还将我们的结果推广到k bbb101服务器,并获得了与(加权)分页问题相对应的统一和星形指标等特殊指标的更强的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信