Identification methodology of a rate-sensitive constitutive law with mean field and full field modeling approaches for polycrystalline materials

IF 1 4区 工程技术 Q4 MECHANICS
Y. Charles, Chun-Lei Zhang, M. Gaspérini, B. Bacroix
{"title":"Identification methodology of a rate-sensitive constitutive law with mean field and full field modeling approaches for polycrystalline materials","authors":"Y. Charles, Chun-Lei Zhang, M. Gaspérini, B. Bacroix","doi":"10.5802/crmeca.56","DOIUrl":null,"url":null,"abstract":"The present paper deals with the consideration of the rate-sensitivity mechanical behavior of metallic materials, in the framework of mean field and full field homogenization approaches. We re-examine the possibility of describing properly this rate sensitivity with a simple and widely used power law expressed at the level of the slip system, and we propose a methodology to accelerate the identification of the global material constitutive law for Finite Element (FE) simulations. For such an aim, simulations of a tensile test are conducted, using a simple homogenization model (the Taylor one, used in a relaxed constraint form) and an FE code (Abaqus), both using the same single-crystal rate-dependent constitutive law. It is shown that, provided that the identification of this law is performed with care and well adapted to the examined case (rate-sensitive or insensitive materials, static and/or dynamic ranges), the simple power law can be used to simulate the macroscopic behavior of polycrystalline aggregates in a wide range of strain rate (including both static and dynamic regimes) and strain-rate sensitivity values (up the rate-insensitive limit).","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"200 1","pages":"1-20"},"PeriodicalIF":1.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/crmeca.56","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper deals with the consideration of the rate-sensitivity mechanical behavior of metallic materials, in the framework of mean field and full field homogenization approaches. We re-examine the possibility of describing properly this rate sensitivity with a simple and widely used power law expressed at the level of the slip system, and we propose a methodology to accelerate the identification of the global material constitutive law for Finite Element (FE) simulations. For such an aim, simulations of a tensile test are conducted, using a simple homogenization model (the Taylor one, used in a relaxed constraint form) and an FE code (Abaqus), both using the same single-crystal rate-dependent constitutive law. It is shown that, provided that the identification of this law is performed with care and well adapted to the examined case (rate-sensitive or insensitive materials, static and/or dynamic ranges), the simple power law can be used to simulate the macroscopic behavior of polycrystalline aggregates in a wide range of strain rate (including both static and dynamic regimes) and strain-rate sensitivity values (up the rate-insensitive limit).
基于平均场和全场建模方法的多晶材料速率敏感本构识别方法
本文讨论了在平均场和全场均匀化方法的框架下考虑金属材料的速率敏感力学行为。我们重新研究了在滑移系统水平上用一个简单而广泛使用的幂律来描述这种速率敏感性的可能性,并提出了一种方法来加速识别有限元(FE)模拟的整体材料本构律。为了这样的目的,模拟拉伸试验进行,使用一个简单的均质模型(泰勒的一个,在一个宽松的约束形式中使用)和一个有限元代码(Abaqus),两者都使用相同的单晶速率相关的本构律。结果表明,只要对这一规律的识别是谨慎的,并很好地适应所研究的情况(速率敏感或不敏感的材料,静态和/或动态范围),简单幂律可以用来模拟多晶聚集体在大范围的应变速率(包括静态和动态体制)和应变速率敏感值(超过速率不敏感的极限)中的宏观行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信