{"title":"Learning the Spiral Sharing Network with Minimum Salient Region Regression for Saliency Detection","authors":"Zukai Chen, Xin Tan, Hengliang Zhu, Shouhong Ding, Lizhuang Ma, Haichuan Song","doi":"10.1109/ICASSP.2019.8682531","DOIUrl":null,"url":null,"abstract":"With the development of convolutional neural networks (CNNs), saliency detection methods have made a big progress in recent years. However, the previous methods sometimes mistakenly highlight the non-salient region, especially in complex backgrounds. To solve this problem, a two-stage method for saliency detection is proposed in this paper. In the first stage, a network is used to regress the minimum salient region (RMSR) containing all salient objects. Then in the second stage, in order to fuse the multi-level features, the spiral sharing network (SSN) is proposed for pixel-level detection on the result of RMSR. Experimental results on four public datasets show that our model is effective over the state-of-the-art approaches.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"125 1","pages":"1667-1671"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the development of convolutional neural networks (CNNs), saliency detection methods have made a big progress in recent years. However, the previous methods sometimes mistakenly highlight the non-salient region, especially in complex backgrounds. To solve this problem, a two-stage method for saliency detection is proposed in this paper. In the first stage, a network is used to regress the minimum salient region (RMSR) containing all salient objects. Then in the second stage, in order to fuse the multi-level features, the spiral sharing network (SSN) is proposed for pixel-level detection on the result of RMSR. Experimental results on four public datasets show that our model is effective over the state-of-the-art approaches.