Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction

S. Javed, T. Bouwmans, Soon Ki Jung
{"title":"Improving OR-PCA via smoothed spatially-consistent low-rank modeling for background subtraction","authors":"S. Javed, T. Bouwmans, Soon Ki Jung","doi":"10.1145/3019612.3019637","DOIUrl":null,"url":null,"abstract":"Background subtraction is a powerful mechanism for moving object detection. In addition to the most popular dynamic background scenes and abrupt lighting condition limitations for designing robust background subtraction mechanism, jitter-induced motion also poses a great challenge. In this case background subtraction becomes more challenging. Although, robust principal component analysis (RPCA) provides a potential solution for moving object detection but many existing RPCA methods for background subtraction still produce abundant false positives in the presence of these challenges. In this paper, we propose background subtraction algorithm based on continuous learning of low-rank matrix using image pixels represented on a Minimum Spanning Tree (MST). First, efficient MST is constructed to estimate minimax path among the spatial pixels of input image. Then, robust smoothing constraint is employed on these pixels for outlier removal. The low-rank matrix is updated using MST-based observed pixels. Finally, we apply the markov random field (MRF) to label the absolute value of the sparse error. Our experiments show that the proposed algorithm achieves promising results on dynamic background and camera jitter sequences compared to state-of-the-art methods.","PeriodicalId":20728,"journal":{"name":"Proceedings of the Symposium on Applied Computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Applied Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3019612.3019637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Background subtraction is a powerful mechanism for moving object detection. In addition to the most popular dynamic background scenes and abrupt lighting condition limitations for designing robust background subtraction mechanism, jitter-induced motion also poses a great challenge. In this case background subtraction becomes more challenging. Although, robust principal component analysis (RPCA) provides a potential solution for moving object detection but many existing RPCA methods for background subtraction still produce abundant false positives in the presence of these challenges. In this paper, we propose background subtraction algorithm based on continuous learning of low-rank matrix using image pixels represented on a Minimum Spanning Tree (MST). First, efficient MST is constructed to estimate minimax path among the spatial pixels of input image. Then, robust smoothing constraint is employed on these pixels for outlier removal. The low-rank matrix is updated using MST-based observed pixels. Finally, we apply the markov random field (MRF) to label the absolute value of the sparse error. Our experiments show that the proposed algorithm achieves promising results on dynamic background and camera jitter sequences compared to state-of-the-art methods.
基于平滑空间一致低秩模型的OR-PCA背景减法改进
背景减法是一种强大的运动目标检测机制。除了最流行的动态背景场景和突然的光照条件对设计健壮的背景减除机制的限制外,抖动引起的运动也对设计提出了很大的挑战。在这种情况下,背景减法变得更具挑战性。虽然鲁棒主成分分析(RPCA)为运动目标检测提供了一种潜在的解决方案,但在这些挑战的存在下,许多现有的RPCA背景减除方法仍然会产生大量的假阳性。在本文中,我们提出了一种基于低秩矩阵连续学习的背景减去算法,该算法使用最小生成树(MST)表示图像像素。首先,构造高效MST估计输入图像空间像素间的极大极小路径;然后,对这些像素采用鲁棒平滑约束进行异常值去除。使用基于mst的观测像素更新低秩矩阵。最后,利用马尔科夫随机场(MRF)对稀疏误差的绝对值进行标注。我们的实验表明,与现有的方法相比,该算法在动态背景和相机抖动序列上取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信