Shufflets: Shared Mid-level Parts for Fast Object Detection

Iasonas Kokkinos
{"title":"Shufflets: Shared Mid-level Parts for Fast Object Detection","authors":"Iasonas Kokkinos","doi":"10.1109/ICCV.2013.176","DOIUrl":null,"url":null,"abstract":"We present a method to identify and exploit structures that are shared across different object categories, by using sparse coding to learn a shared basis for the 'part' and 'root' templates of Deformable Part Models (DPMs).Our first contribution consists in using Shift-Invariant Sparse Coding (SISC) to learn mid-level elements that can translate during coding. This results in systematically better approximations than those attained using standard sparse coding. To emphasize that the learned mid-level structures are shiftable we call them shufflets.Our second contribution consists in using the resulting score to construct probabilistic upper bounds to the exact template scores, instead of taking them 'at face value' as is common in current works. We integrate shufflets in Dual- Tree Branch-and-Bound and cascade-DPMs and demonstrate that we can achieve a substantial acceleration, with practically no loss in performance.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"22 1","pages":"1393-1400"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We present a method to identify and exploit structures that are shared across different object categories, by using sparse coding to learn a shared basis for the 'part' and 'root' templates of Deformable Part Models (DPMs).Our first contribution consists in using Shift-Invariant Sparse Coding (SISC) to learn mid-level elements that can translate during coding. This results in systematically better approximations than those attained using standard sparse coding. To emphasize that the learned mid-level structures are shiftable we call them shufflets.Our second contribution consists in using the resulting score to construct probabilistic upper bounds to the exact template scores, instead of taking them 'at face value' as is common in current works. We integrate shufflets in Dual- Tree Branch-and-Bound and cascade-DPMs and demonstrate that we can achieve a substantial acceleration, with practically no loss in performance.
Shufflets:用于快速对象检测的共享中级部件
我们提出了一种方法,通过使用稀疏编码来学习可变形零件模型(dpm)的“部分”和“根”模板的共享基础,来识别和利用跨不同对象类别共享的结构。我们的第一个贡献是使用平移不变稀疏编码(SISC)来学习可以在编码过程中翻译的中级元素。这比使用标准稀疏编码获得的近似结果系统地更好。为了强调习得的中级结构是可移动的,我们称它们为shufflet。我们的第二个贡献在于使用结果分数来构建精确模板分数的概率上限,而不是像当前工作中常见的那样“表面价值”。我们在双树分支绑定和级联dpm中集成了shufflets,并证明了我们可以在几乎没有性能损失的情况下实现实质性的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信