{"title":"Optimization of the Crystallization Process of Bis(2‐hydroxyethyl) Terephthalate","authors":"Peiquan Yuan, Baoshu Liu, Hua Sun","doi":"10.1002/crat.202100025","DOIUrl":null,"url":null,"abstract":"The crystallization process of bis(2‐hydroxyethyl) terephthalate is experimentally investigated. The optimized crystals of bis(2‐hydroxyethyl) terephthalate have the median particle size (D50) of 1300 µm and a perfect crystal habit, and their diameter span reduces from 11.48 (before optimization) to 1.72 (after optimization). The results show that more oxygen atoms at both ends of the crystal are exposed to the crystal surfaces, which make it easy to form hydrogen bonds with free bis(2‐hydroxyethyl) terephthalate. Therefore, the crystal surfaces at both ends grow fastest and tend to disappear eventually.","PeriodicalId":10797,"journal":{"name":"Crystal Research and Technology","volume":"6 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/crat.202100025","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 1
Abstract
The crystallization process of bis(2‐hydroxyethyl) terephthalate is experimentally investigated. The optimized crystals of bis(2‐hydroxyethyl) terephthalate have the median particle size (D50) of 1300 µm and a perfect crystal habit, and their diameter span reduces from 11.48 (before optimization) to 1.72 (after optimization). The results show that more oxygen atoms at both ends of the crystal are exposed to the crystal surfaces, which make it easy to form hydrogen bonds with free bis(2‐hydroxyethyl) terephthalate. Therefore, the crystal surfaces at both ends grow fastest and tend to disappear eventually.
期刊介绍:
The journal Crystal Research and Technology is a pure online Journal (since 2012).
Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of
-crystal growth techniques and phenomena (including bulk growth, thin films)
-modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals)
-industrial crystallisation
-application of crystals in materials science, electronics, data storage, and optics
-experimental, simulation and theoretical studies of the structural properties of crystals
-crystallographic computing