Scavenger: A Black-Box Batch Workload Resource Manager for Improving Utilization in Cloud Environments

S. A. Javadi, Amoghavarsha Suresh, Muhammad Wajahat, Anshul Gandhi
{"title":"Scavenger: A Black-Box Batch Workload Resource Manager for Improving Utilization in Cloud Environments","authors":"S. A. Javadi, Amoghavarsha Suresh, Muhammad Wajahat, Anshul Gandhi","doi":"10.1145/3357223.3362734","DOIUrl":null,"url":null,"abstract":"Resource under-utilization is common in cloud data centers. Prior works have proposed improving utilization by running provider workloads in the background, colocated with tenant workloads. However, an important challenge that has still not been addressed is considering the tenant workloads as a black-box. We present Scavenger, a batch workload manager that opportunistically runs containerized batch jobs next to black-box tenant VMs to improve utilization. Scavenger is designed to work without requiring any offline profiling or prior information about the tenant workload. To meet the tenant VMs' resource demand at all times, Scavenger dynamically regulates the resource usage of batch jobs, including processor usage, memory capacity, and network bandwidth. We experimentally evaluate Scavenger on two different testbeds using latency-sensitive tenant workloads colocated with Spark jobs in the background and show that Scavenger significantly increases resource usage without compromising the resource demands of tenant VMs.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Resource under-utilization is common in cloud data centers. Prior works have proposed improving utilization by running provider workloads in the background, colocated with tenant workloads. However, an important challenge that has still not been addressed is considering the tenant workloads as a black-box. We present Scavenger, a batch workload manager that opportunistically runs containerized batch jobs next to black-box tenant VMs to improve utilization. Scavenger is designed to work without requiring any offline profiling or prior information about the tenant workload. To meet the tenant VMs' resource demand at all times, Scavenger dynamically regulates the resource usage of batch jobs, including processor usage, memory capacity, and network bandwidth. We experimentally evaluate Scavenger on two different testbeds using latency-sensitive tenant workloads colocated with Spark jobs in the background and show that Scavenger significantly increases resource usage without compromising the resource demands of tenant VMs.
清除器:用于提高云环境利用率的黑盒批处理工作负载资源管理器
资源利用不足在云数据中心中很常见。以前的工作建议通过在后台运行提供者工作负载,并与租户工作负载共存来提高利用率。然而,仍未解决的一个重要挑战是将租户工作负载视为黑盒。我们介绍了一个批处理工作负载管理器Scavenger,它可以在黑箱租户vm旁边随机运行容器化的批处理作业,以提高利用率。Scavenger的设计无需任何离线分析或有关租户工作负载的先前信息即可工作。为了随时满足租户虚拟机的资源需求,Scavenger动态调节批处理作业的资源使用情况,包括处理器占用率、内存容量和网络带宽。我们在两个不同的测试平台上使用延迟敏感的租户工作负载和后台的Spark作业对Scavenger进行了实验评估,结果表明Scavenger在不影响租户虚拟机资源需求的情况下显著增加了资源使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信