{"title":"Countably totally projective Abelian p-groups have minimal full inertia","authors":"P. Keef","doi":"10.1216/jca.2022.14.427","DOIUrl":null,"url":null,"abstract":"A new class of abelian p-groups is introduced, the countably totally projective groups, that contains the well-known class of totally projective groups. A countably totally projective group is shown to have the property that every fully inert subgroup is commensurable with a fully invariant subgroup. This generalizes results of Goldsmith, Salce and Zanardo (2014), who proved that a direct sum of cyclic p-groups has this property. It also answers affirmatively two questions recently posed in the literature.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2022.14.427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A new class of abelian p-groups is introduced, the countably totally projective groups, that contains the well-known class of totally projective groups. A countably totally projective group is shown to have the property that every fully inert subgroup is commensurable with a fully invariant subgroup. This generalizes results of Goldsmith, Salce and Zanardo (2014), who proved that a direct sum of cyclic p-groups has this property. It also answers affirmatively two questions recently posed in the literature.