{"title":"Breast cancer prediction using an optimal machine learning technique for next generation sequences","authors":"Babymol Kurian, V. Jyothi","doi":"10.1177/1063293X21991808","DOIUrl":null,"url":null,"abstract":"A wide reach on cancer prediction and detection using Next Generation Sequencing (NGS) by the application of artificial intelligence is highly appreciated in the current scenario of the medical field. Next generation sequences were extracted from NCBI (National Centre for Biotechnology Information) gene repository. Sequences of normal Homo sapiens (Class 1), BRCA1 (Class 2) and BRCA2 (Class 3) were extracted for Machine Learning (ML) purpose. The total volume of datasets extracted for the process were 1580 in number under four categories of 50, 100, 150 and 200 sequences. The breast cancer prediction process was carried out in three major steps such as feature extraction, machine learning classification and performance evaluation. The features were extracted with sequences as input. Ten features of DNA sequences such as ORF (Open Reading Frame) count, individual nucleobase average count of A, T, C, G, AT and GC-content, AT/GC composition, G-quadruplex occurrence, MR (Mutation Rate) were extracted from three types of sequences for the classification process. The sequence type was also included as a target variable to the feature set with values 0, 1 and 2 for classes 1, 2 and 3 respectively. Nine various supervised machine learning techniques like LR (Logistic Regression statistical model), LDA (Linear Discriminant analysis model), k-NN (k nearest neighbours’ algorithm), DT (Decision tree technique), NB (Naive Bayes classifier), SVM (Support-Vector Machine algorithm), RF (Random Forest learning algorithm), AdaBoost (AB) and Gradient Boosting (GB) were employed on four various categories of datasets. Of all supervised models, decision tree machine learning technique performed most with maximum accuracy in classification of 94.03%. Classification model performance was evaluated using precision, recall, F1-score and support values wherein F1-score was most similar to the classification accuracy.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"10 1","pages":"49 - 57"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X21991808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
A wide reach on cancer prediction and detection using Next Generation Sequencing (NGS) by the application of artificial intelligence is highly appreciated in the current scenario of the medical field. Next generation sequences were extracted from NCBI (National Centre for Biotechnology Information) gene repository. Sequences of normal Homo sapiens (Class 1), BRCA1 (Class 2) and BRCA2 (Class 3) were extracted for Machine Learning (ML) purpose. The total volume of datasets extracted for the process were 1580 in number under four categories of 50, 100, 150 and 200 sequences. The breast cancer prediction process was carried out in three major steps such as feature extraction, machine learning classification and performance evaluation. The features were extracted with sequences as input. Ten features of DNA sequences such as ORF (Open Reading Frame) count, individual nucleobase average count of A, T, C, G, AT and GC-content, AT/GC composition, G-quadruplex occurrence, MR (Mutation Rate) were extracted from three types of sequences for the classification process. The sequence type was also included as a target variable to the feature set with values 0, 1 and 2 for classes 1, 2 and 3 respectively. Nine various supervised machine learning techniques like LR (Logistic Regression statistical model), LDA (Linear Discriminant analysis model), k-NN (k nearest neighbours’ algorithm), DT (Decision tree technique), NB (Naive Bayes classifier), SVM (Support-Vector Machine algorithm), RF (Random Forest learning algorithm), AdaBoost (AB) and Gradient Boosting (GB) were employed on four various categories of datasets. Of all supervised models, decision tree machine learning technique performed most with maximum accuracy in classification of 94.03%. Classification model performance was evaluated using precision, recall, F1-score and support values wherein F1-score was most similar to the classification accuracy.
在当前医疗领域的场景中,人工智能应用的下一代测序(NGS)在癌症预测和检测方面的广泛影响受到高度赞赏。下一代序列从NCBI (National Centre for Biotechnology Information)基因库中提取。提取正常智人(1类)、BRCA1(2类)和BRCA2(3类)序列用于机器学习(ML)目的。该过程提取的数据集总量为1580个,分为50、100、150和200个序列。乳腺癌预测过程分为特征提取、机器学习分类和性能评估三个主要步骤。以序列为输入提取特征。从3类序列中提取ORF (Open Reading Frame)计数、A、T、C、G、AT和GC含量的单个核碱基平均计数、AT/GC组成、G-四重体发生率、MR(突变率)等10个特征进行分类。序列类型也被作为目标变量包含到特征集中,分别为第1类、第2类和第3类的值分别为0、1和2。九种不同的监督机器学习技术,如LR(逻辑回归统计模型),LDA(线性判别分析模型),k- nn (k近邻算法),DT(决策树技术),NB(朴素贝叶斯分类器),SVM(支持向量机算法),RF(随机森林学习算法),AdaBoost (AB)和Gradient Boosting (GB)在四种不同类别的数据集上使用。在所有监督模型中,决策树机器学习技术的分类准确率最高,达到94.03%。采用准确率、召回率、F1-score和支持度值评价分类模型的性能,其中F1-score与分类准确率最接近。