Classification of diabetic retinopathy using neural networks

H.T. Nguyen, M. Butler, A. Roychoudhry, A. Shannon, J. Flack, P. Mitchell
{"title":"Classification of diabetic retinopathy using neural networks","authors":"H.T. Nguyen, M. Butler, A. Roychoudhry, A. Shannon, J. Flack, P. Mitchell","doi":"10.1109/IEMBS.1996.647546","DOIUrl":null,"url":null,"abstract":"Classification of the severity of diabetic retinopathy (DR) and quantification of diabetic changes are vital for assessing the therapies and risk factors for this frequent complication of diabetes. A multilayer feedforward network has been developed for the classification of DR. One of its major strengths is that accurate feature extractions and accurate grading of DR lesions are not required. Another strength of this technique is its robustness as the network can also classify DR effectively in noisy environments.","PeriodicalId":20427,"journal":{"name":"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"190 1","pages":"1548-1549 vol.4"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1996.647546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Classification of the severity of diabetic retinopathy (DR) and quantification of diabetic changes are vital for assessing the therapies and risk factors for this frequent complication of diabetes. A multilayer feedforward network has been developed for the classification of DR. One of its major strengths is that accurate feature extractions and accurate grading of DR lesions are not required. Another strength of this technique is its robustness as the network can also classify DR effectively in noisy environments.
糖尿病视网膜病变的神经网络分类
糖尿病视网膜病变(DR)严重程度的分类和糖尿病变化的量化对于评估这种常见的糖尿病并发症的治疗和危险因素至关重要。一种多层前馈网络已被开发用于DR的分类,其主要优点之一是不需要准确的特征提取和DR病变的准确分级。该技术的另一个优点是它的鲁棒性,因为网络也可以在噪声环境中有效地对DR进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信