Error Exponents in Distributed Hypothesis Testing of Correlations

U. Hadar, Jingbo Liu, Yury Polyanskiy, O. Shayevitz
{"title":"Error Exponents in Distributed Hypothesis Testing of Correlations","authors":"U. Hadar, Jingbo Liu, Yury Polyanskiy, O. Shayevitz","doi":"10.1109/ISIT.2019.8849426","DOIUrl":null,"url":null,"abstract":"We study a distributed hypothesis testing problem where two parties observe i.i.d. samples from two ρ-correlated standard normal random variables X and Y. The party that observes the X-samples can communicate R bits per sample to the second party, that observes the Y-samples, in order to test between two correlation values. We investigate the best possible type-II error subject to a fixed type-I error, and derive an upper (impossibility) bound on the associated type-II error exponent. Our techniques include representing the conditional Y-samples as a trajectory of the Ornstein-Uhlenbeck process, and bounding the associated KL divergence using the subadditivity of the Wasserstein distance and the Gaussian Talagrand inequality.","PeriodicalId":6708,"journal":{"name":"2019 IEEE International Symposium on Information Theory (ISIT)","volume":"20 1","pages":"2674-2678"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2019.8849426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We study a distributed hypothesis testing problem where two parties observe i.i.d. samples from two ρ-correlated standard normal random variables X and Y. The party that observes the X-samples can communicate R bits per sample to the second party, that observes the Y-samples, in order to test between two correlation values. We investigate the best possible type-II error subject to a fixed type-I error, and derive an upper (impossibility) bound on the associated type-II error exponent. Our techniques include representing the conditional Y-samples as a trajectory of the Ornstein-Uhlenbeck process, and bounding the associated KL divergence using the subadditivity of the Wasserstein distance and the Gaussian Talagrand inequality.
相关性分布假设检验中的误差指数
我们研究了一个分布式假设检验问题,其中两方从两个ρ相关的标准正态随机变量X和y中观察到i.i.d个样本,观察X样本的一方可以将每个样本的R位通信给观察y样本的另一方,以便在两个相关值之间进行检验。我们研究了固定的i型误差下的最佳可能的ii型误差,并推导了相关的ii型误差指数的上(不可能)界。我们的技术包括将条件y样本表示为Ornstein-Uhlenbeck过程的轨迹,并使用Wasserstein距离的次可加性和高斯塔拉格兰不等式来限定相关的KL散度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信