Connectedness Principle for 3-Folds in Characteristic p>5

Pub Date : 2020-10-16 DOI:10.1307/mmj/20216143
Stefano Filipazzi, J. Waldron
{"title":"Connectedness Principle for 3-Folds in Characteristic p>5","authors":"Stefano Filipazzi, J. Waldron","doi":"10.1307/mmj/20216143","DOIUrl":null,"url":null,"abstract":"A conjecture, known as the Shokurov-Koll\\'ar connectedness principle, predicts the following. Let $(X,B)$ be a pair, and let $f \\colon X \\rightarrow S$ be a contraction with $-(K_X + B)$ nef over $S$; then, for any point $s \\in S$, the intersection $f^{-1} (s) \\cap \\mathrm{Nklt}(X,B)$ has at most two connected components, where $\\mathrm{Nklt}(X,B)$ denotes the non-klt locus of $(X,B)$. This conjecture has been extensively studied in characteristic zero, and it has been recently settled in that context. In this work, we consider this conjecture in the setup of positive characteristic algebraic geometry. We prove this conjecture holds for threefolds in characteristic $p>5$, and, under the same assumptions, we characterize the cases in which $\\mathrm{Nklt}(X,B)$ fails to be connected.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20216143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A conjecture, known as the Shokurov-Koll\'ar connectedness principle, predicts the following. Let $(X,B)$ be a pair, and let $f \colon X \rightarrow S$ be a contraction with $-(K_X + B)$ nef over $S$; then, for any point $s \in S$, the intersection $f^{-1} (s) \cap \mathrm{Nklt}(X,B)$ has at most two connected components, where $\mathrm{Nklt}(X,B)$ denotes the non-klt locus of $(X,B)$. This conjecture has been extensively studied in characteristic zero, and it has been recently settled in that context. In this work, we consider this conjecture in the setup of positive characteristic algebraic geometry. We prove this conjecture holds for threefolds in characteristic $p>5$, and, under the same assumptions, we characterize the cases in which $\mathrm{Nklt}(X,B)$ fails to be connected.
分享
查看原文
特征p>5的3-褶皱连通性原理
一个被称为Shokurov-Kollár连通性原理的猜想预测了以下情况。设$(X,B)$为一对,设$f \colon X \rightarrow S$为$-(K_X + B)$ nef / $S$的缩略语;然后,对于任意点$s \in S$,相交$f^{-1} (s) \cap \mathrm{Nklt}(X,B)$最多有两个连通分量,其中$\mathrm{Nklt}(X,B)$表示$(X,B)$的非klt轨迹。这一猜想在特征零中得到了广泛的研究,最近在这一背景下得到了解决。在本工作中,我们在正特征代数几何的建立中考虑这个猜想。我们证明了这个猜想在特征$p>5$中三倍成立,并且,在相同的假设下,我们描述了$\mathrm{Nklt}(X,B)$不连接的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信