Loop homotopy of 6–manifolds over 4–manifolds

IF 0.6 3区 数学 Q3 MATHEMATICS
R. Huang
{"title":"Loop homotopy of 6–manifolds over\n4–manifolds","authors":"R. Huang","doi":"10.2140/agt.2023.23.2369","DOIUrl":null,"url":null,"abstract":"Let $M$ be the $6$-manifold $M$ as the total space of the sphere bundle of a rank $3$ vector bundle over a simply connected closed $4$-manifold. We show that after looping $M$ is homotopy equivalent to a product of loops on spheres in general. This particularly implies the cohomology rigidity property of $M$ after looping. Furthermore, passing to the rational homotopy, we show that such $M$ is Koszul in the sense of Berglund.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"131 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.2369","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Let $M$ be the $6$-manifold $M$ as the total space of the sphere bundle of a rank $3$ vector bundle over a simply connected closed $4$-manifold. We show that after looping $M$ is homotopy equivalent to a product of loops on spheres in general. This particularly implies the cohomology rigidity property of $M$ after looping. Furthermore, passing to the rational homotopy, we show that such $M$ is Koszul in the sense of Berglund.
6流形对4流形的环同伦
设$M$为$6$流形$M$作为$3$向量束在单连通闭合$4$流形上的球束的总空间。我们证明了循环后$M$一般等价于球面上的循环积。这特别暗示了$M$在循环后的上同刚性。进一步,转到有理同伦,我们证明了这样的$M$是Berglund意义上的Koszul。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信