{"title":"An investigation of induced free-surface wave oscillations in prismatic open-channel","authors":"Souad Mnassri, A. Triki","doi":"10.1080/09715010.2022.2138587","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper reported on the free-surface wave behavior in a rectangular open-channel, induced by sluice-gate maneuvers. Numerical computations used the McCormack scheme to solve the one-dimensional extended St-Venant model embedding the Prandtl power-law momentum correction coefficient. The fundamental pulsation of the hydraulic system was inspected using the analogy with the water-hammer theory, known in pressurized-pipe flows. Different flow scenarios were reported; including the superposition between (i) downstream water-hammer maneuver and sine excitation of upstream flow depth and (ii) sinusoidal fluctuations of upstream lateral inflow and downstream flow-depth. Results highlighted that such sluice-gates maneuvers involved severe scenarios leading to significant amplifications of the depth peak and crest values above the initial value.","PeriodicalId":38206,"journal":{"name":"ISH Journal of Hydraulic Engineering","volume":"88 1","pages":"701 - 706"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISH Journal of Hydraulic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09715010.2022.2138587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT This paper reported on the free-surface wave behavior in a rectangular open-channel, induced by sluice-gate maneuvers. Numerical computations used the McCormack scheme to solve the one-dimensional extended St-Venant model embedding the Prandtl power-law momentum correction coefficient. The fundamental pulsation of the hydraulic system was inspected using the analogy with the water-hammer theory, known in pressurized-pipe flows. Different flow scenarios were reported; including the superposition between (i) downstream water-hammer maneuver and sine excitation of upstream flow depth and (ii) sinusoidal fluctuations of upstream lateral inflow and downstream flow-depth. Results highlighted that such sluice-gates maneuvers involved severe scenarios leading to significant amplifications of the depth peak and crest values above the initial value.