Finite, fiber-preserving group actions on elliptic 3-manifolds

Benjamin Peet
{"title":"Finite, fiber-preserving group actions on elliptic 3-manifolds","authors":"Benjamin Peet","doi":"10.5666/KMJ.2022.62.2.363","DOIUrl":null,"url":null,"abstract":"In two previous papers the author presented a general construction of finite, fiber- and orientation-preserving group actions on orientable Seifert manifolds. In this paper we restrict our attention to elliptic 3-manifolds. A proof is given that orientation-reversing and fiber-preserving diffeomorphisms of Seifert manifolds do not exist for nonzero Euler class, in particular elliptic 3-manifolds. Each type of elliptic 3-manifold is then considered and the possible group actions that fit the given construction. This is shown to be all but a few cases that have been considered elsewhere. Finally, a presentation for the quotient space under such an action is constructed and a specific example is generated.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5666/KMJ.2022.62.2.363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In two previous papers the author presented a general construction of finite, fiber- and orientation-preserving group actions on orientable Seifert manifolds. In this paper we restrict our attention to elliptic 3-manifolds. A proof is given that orientation-reversing and fiber-preserving diffeomorphisms of Seifert manifolds do not exist for nonzero Euler class, in particular elliptic 3-manifolds. Each type of elliptic 3-manifold is then considered and the possible group actions that fit the given construction. This is shown to be all but a few cases that have been considered elsewhere. Finally, a presentation for the quotient space under such an action is constructed and a specific example is generated.
椭圆型3流形上有限的保纤维群作用
在前两篇文章中,作者给出了可定向Seifert流形上有限、纤维和取向保持群作用的一般构造。本文主要研究椭圆型3流形。证明了非零欧拉类,特别是椭圆型3-流形不存在反取向和保纤维的塞费特流形的微分同态。然后考虑了每种类型的椭圆3流形以及适合给定构造的可能群作用。除了少数情况外,其他地方都考虑过这种情况。最后,构造了这种作用下商空间的表示,并生成了一个具体的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信