Sustainable Serverless Computing With Cold-Start Optimization and Automatic Workflow Resource Scheduling

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shanxing Pan;Hongyu Zhao;Zinuo Cai;Dongmei Li;Ruhui Ma;Haibing Guan
{"title":"Sustainable Serverless Computing With Cold-Start Optimization and Automatic Workflow Resource Scheduling","authors":"Shanxing Pan;Hongyu Zhao;Zinuo Cai;Dongmei Li;Ruhui Ma;Haibing Guan","doi":"10.1109/TSUSC.2023.3311197","DOIUrl":null,"url":null,"abstract":"In recent years, serverless computing has garnered significant attention owing to its high scalability, pay-as-you-go billing model, and efficient resource management provided by cloud service providers. Optimal resource scheduling of serverless computing has become imperative to reduce energy consumption and enable sustainable computing. However, existing serverless platforms encounter two significant challenges: the cold-start problem of containers and the absence of an effective resource allocation strategy for serverless workflows. Existing pre-warm strategies are associated with high computational overhead, while current resource scheduling techniques inadequately account for the intricate structure of serverless workflows. To address these challenges, we present SSC, a pre-warming and automatic resource allocation framework designed explicitly for serverless workflows. We introduce an innovative gradient-based algorithm for pre-warming containers, significantly reducing cold start hit rates. Moreover, leveraging a critical path and priority queue-based algorithm, SSC enables efficient allocation of resources for serverless workflows. In our experimental evaluation, SSC reduces the cold start hit rate by nearly 50% and achieves substantial cost savings of approximately 30%.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 3","pages":"329-340"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10237322/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, serverless computing has garnered significant attention owing to its high scalability, pay-as-you-go billing model, and efficient resource management provided by cloud service providers. Optimal resource scheduling of serverless computing has become imperative to reduce energy consumption and enable sustainable computing. However, existing serverless platforms encounter two significant challenges: the cold-start problem of containers and the absence of an effective resource allocation strategy for serverless workflows. Existing pre-warm strategies are associated with high computational overhead, while current resource scheduling techniques inadequately account for the intricate structure of serverless workflows. To address these challenges, we present SSC, a pre-warming and automatic resource allocation framework designed explicitly for serverless workflows. We introduce an innovative gradient-based algorithm for pre-warming containers, significantly reducing cold start hit rates. Moreover, leveraging a critical path and priority queue-based algorithm, SSC enables efficient allocation of resources for serverless workflows. In our experimental evaluation, SSC reduces the cold start hit rate by nearly 50% and achieves substantial cost savings of approximately 30%.
利用冷启动优化和自动工作流资源调度实现可持续的无服务器计算
近年来,无服务器计算因其高度的可扩展性、"即用即付 "的计费模式以及云服务提供商提供的高效资源管理而备受关注。无服务器计算的最佳资源调度已成为降低能耗和实现可持续计算的当务之急。然而,现有的无服务器平台遇到了两个重大挑战:容器的冷启动问题和无服务器工作流缺乏有效的资源分配策略。现有的预热策略会带来很高的计算开销,而当前的资源调度技术又无法充分考虑无服务器工作流错综复杂的结构。为了应对这些挑战,我们提出了 SSC,这是一个专为无服务器工作流设计的预热和自动资源分配框架。我们引入了一种基于梯度的创新算法来预热容器,大大降低了冷启动命中率。此外,利用基于关键路径和优先级队列的算法,SSC 还能为无服务器工作流高效分配资源。在我们的实验评估中,SSC 将冷启动命中率降低了近 50%,并大幅节省了约 30% 的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信