Enhancement of lossy compressed images by modeling with Bernstein polynomials

J. Mayer
{"title":"Enhancement of lossy compressed images by modeling with Bernstein polynomials","authors":"J. Mayer","doi":"10.1109/ICIP.2002.1038152","DOIUrl":null,"url":null,"abstract":"A non-iterative post-processing enhancement technique is proposed for images degraded by either the JPEG-DCT or the JPEG-LS (LOCO) lossy coding algorithm. A degraded image is classified into active and smooth regions. A distance transform is applied to the resulting classification, and is used to determine the size and order of a Bezier surface patch. These Bezier blending surfaces, built with Bernstein polynomials, provide an interesting representation for the image. This approach mitigates the quantization noise while preserving strong edges and textures. Results illustrate the significant visual improvement achieved with a computational complexity of O(n).","PeriodicalId":74572,"journal":{"name":"Proceedings. International Conference on Image Processing","volume":"10 1","pages":"I-I"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2002.1038152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A non-iterative post-processing enhancement technique is proposed for images degraded by either the JPEG-DCT or the JPEG-LS (LOCO) lossy coding algorithm. A degraded image is classified into active and smooth regions. A distance transform is applied to the resulting classification, and is used to determine the size and order of a Bezier surface patch. These Bezier blending surfaces, built with Bernstein polynomials, provide an interesting representation for the image. This approach mitigates the quantization noise while preserving strong edges and textures. Results illustrate the significant visual improvement achieved with a computational complexity of O(n).
用Bernstein多项式建模增强有损压缩图像
针对被JPEG-DCT或JPEG-LS (LOCO)有损编码算法退化的图像,提出了一种非迭代后处理增强技术。退化后的图像被分为活动区域和平滑区域。将距离变换应用于结果分类,并用于确定贝塞尔表面补丁的大小和顺序。这些贝塞尔混合曲面,用伯恩斯坦多项式构建,为图像提供了一个有趣的表示。这种方法减轻了量化噪声,同时保留了强边缘和纹理。结果表明,在计算复杂度为0 (n)的情况下,实现了显著的视觉改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信