Stabilization of Maglev Plant Through Feedback Controller

Arpan Gupta, D. Sharma, S. Ghoshal
{"title":"Stabilization of Maglev Plant Through Feedback Controller","authors":"Arpan Gupta, D. Sharma, S. Ghoshal","doi":"10.1166/asem.2020.2587","DOIUrl":null,"url":null,"abstract":"The MAGLEV plant found its application in various engineering fields namely high-speed trains, non-contact bearings, maglev wind turbine and many more. The Maglev plant shows non-linear behavior and is highly unstable in nature. The following work emphasis on how the Maglev plant can\n be stabilized and also on developing its mathematical model. Firstly, non-linear model is converted to a linear one through the use of Taylor’s series. After linearization, the state space model of the system is developed which further helps in making the Simulink model and then finally\n feedback controller is employed in order to control the system.","PeriodicalId":7213,"journal":{"name":"Advanced Science, Engineering and Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science, Engineering and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/asem.2020.2587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The MAGLEV plant found its application in various engineering fields namely high-speed trains, non-contact bearings, maglev wind turbine and many more. The Maglev plant shows non-linear behavior and is highly unstable in nature. The following work emphasis on how the Maglev plant can be stabilized and also on developing its mathematical model. Firstly, non-linear model is converted to a linear one through the use of Taylor’s series. After linearization, the state space model of the system is developed which further helps in making the Simulink model and then finally feedback controller is employed in order to control the system.
基于反馈控制器的磁悬浮装置镇定
磁悬浮装置在各种工程领域得到了应用,如高速列车、非接触轴承、磁悬浮风力涡轮机等。磁悬浮装置具有非线性特性,具有高度的不稳定性。接下来的工作重点是如何稳定磁悬浮装置,并建立其数学模型。首先,利用泰勒级数将非线性模型转化为线性模型。在线性化后,建立系统的状态空间模型,进一步建立Simulink模型,最后采用反馈控制器对系统进行控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信