{"title":"Inverse Discriminative Networks for Handwritten Signature Verification","authors":"Ping Wei, Huan Li, Ping Hu","doi":"10.1109/CVPR.2019.00591","DOIUrl":null,"url":null,"abstract":"Handwritten signature verification is an important technique for many financial, commercial, and forensic applications. In this paper, we propose an inverse discriminative network (IDN) for writer-independent handwritten signature verification, which aims to determine whether a test signature is genuine or forged compared to the reference signature. The IDN model contains four weight-shared neural network streams, of which two receiving the original signature images are the discriminative streams and the other two addressing the gray-inverted images form the inverse streams. Multiple paths of attention modules connect the discriminative streams and the inverse streams to propagate messages. With the inverse streams and the multi-path attention modules, the IDN model intensifies the effective information of signature verification. Since there was no proper Chinese signature dataset in the community, we collected a large-scale Chinese signature dataset with approximately 29,000 images of 749 individuals’ signatures. We test our method on the Chinese signature dataset and other three signature datasets of different languages: CEDAR, BHSig-B, and BHSig-H. Experiments prove the strength and potential of our method.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"46 1","pages":"5757-5765"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
Handwritten signature verification is an important technique for many financial, commercial, and forensic applications. In this paper, we propose an inverse discriminative network (IDN) for writer-independent handwritten signature verification, which aims to determine whether a test signature is genuine or forged compared to the reference signature. The IDN model contains four weight-shared neural network streams, of which two receiving the original signature images are the discriminative streams and the other two addressing the gray-inverted images form the inverse streams. Multiple paths of attention modules connect the discriminative streams and the inverse streams to propagate messages. With the inverse streams and the multi-path attention modules, the IDN model intensifies the effective information of signature verification. Since there was no proper Chinese signature dataset in the community, we collected a large-scale Chinese signature dataset with approximately 29,000 images of 749 individuals’ signatures. We test our method on the Chinese signature dataset and other three signature datasets of different languages: CEDAR, BHSig-B, and BHSig-H. Experiments prove the strength and potential of our method.