Quantum mechanics and field theory on multiply connected and on homogeneous spaces

J. S. Dowker
{"title":"Quantum mechanics and field theory on multiply connected and on homogeneous spaces","authors":"J. S. Dowker","doi":"10.1088/0305-4470/5/7/004","DOIUrl":null,"url":null,"abstract":"The basic framework for discussing quantum mechanics on multiply connected spaces is presented using the covering space concept. The theorem of Laidlaw and DeWitt is rederived and extended to the case of field theory. It is pointed out that chiral dynamics is similar to Skyrme's nonlinear theory and forms another example of Finkelstein's kink idea. The possible existence of ' pi geons' is raised, and the fact that the pion manifold may be any one of the Clifford-Klein constant curvature space-forms, rather than just the whole three-sphere, is suggested. The related formalism for quantum mechanics on homogeneous spaces is given in general terms.","PeriodicalId":54612,"journal":{"name":"Physics-A Journal of General and Applied Physics","volume":"13 11 1","pages":"936-943"},"PeriodicalIF":0.0000,"publicationDate":"1972-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"112","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics-A Journal of General and Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/0305-4470/5/7/004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 112

Abstract

The basic framework for discussing quantum mechanics on multiply connected spaces is presented using the covering space concept. The theorem of Laidlaw and DeWitt is rederived and extended to the case of field theory. It is pointed out that chiral dynamics is similar to Skyrme's nonlinear theory and forms another example of Finkelstein's kink idea. The possible existence of ' pi geons' is raised, and the fact that the pion manifold may be any one of the Clifford-Klein constant curvature space-forms, rather than just the whole three-sphere, is suggested. The related formalism for quantum mechanics on homogeneous spaces is given in general terms.
多重连通和齐次空间上的量子力学和场论
利用覆盖空间的概念,给出了讨论多连通空间上量子力学的基本框架。对Laidlaw和DeWitt定理进行了重新推导,并将其推广到场论中。指出手性动力学类似于Skyrme的非线性理论,是Finkelstein扭结思想的另一个例子。提出了π介子存在的可能性,并提出π介子流形可能是Clifford-Klein常曲率空间形式中的任何一种,而不仅仅是整个三球。一般地给出了齐次空间上量子力学的相关形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信